Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T13:21:39.789Z Has data issue: false hasContentIssue false

The oldest sequenced fungal herbarium sample

Published online by Cambridge University Press:  24 August 2012

Oleksii REDCHENKO
Affiliation:
M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Street, 01601 Kiev, Ukraine
Jan VONDRÁK*
Affiliation:
Institute of Botany, Academy of Sciences, Zámek 1, CZ–252 43 Průhonice, Czech Republic and Department of Botany, Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic. Email: [email protected]
Jiří KOŠNAR
Affiliation:
Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, CZ-370 05, Czech Republic

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Short Communications
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez, I. & Wendel, J. F. (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417434.CrossRefGoogle ScholarPubMed
Andreasen, K., Manktelow, M. & Razafimandimbison, S. G. (2009) Successful DNA amplification of a more than 200-year-old herbarium specimen: recovering genetic material from the Linnaean era. Taxon 58: 959962.CrossRefGoogle Scholar
Aras, S. & Cansaran, D. (2006) Isolation of DNA for sequence analysis from herbarium material of some lichen specimens. Turkish Journal of Botany 30: 449453.Google Scholar
Cano, R. J. & Borucki, M. K. (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268: 10601064.CrossRefGoogle ScholarPubMed
Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A. & Poinar, G. O. (1993) Amplification and sequencing of DNA from a 120–135-million-year-old weevil. Nature 363: 536538.CrossRefGoogle ScholarPubMed
DePriest, P. T., Ivanova, N. V., Fahselt, D., Alstrup, V. & Gargas, A. (2000) Sequences of psychrophilic fungi amplified from glacier-preserved ascolichens. Canadian Journal of Botany 78: 14501459.CrossRefGoogle Scholar
DeSalle, R., Gatesy, J., Wheeler, W. & Grimaldi, D. (1992) DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257: 19331936.CrossRefGoogle ScholarPubMed
Ekman, S. (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105: 783797.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes. Application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Grube, M., DePriest, P. T., Gargas, A. & Hafellner, J. (1995) DNA isolation from lichen ascomata. Mycological Research 99: 13211324.CrossRefGoogle Scholar
Gutiérrez, G. & Marín, A. (1998) The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Molecular Biology and Evolution 15: 926929.CrossRefGoogle Scholar
Jankowiak, K., Buczkowska, K. & Szweykowska-Kulinska, Z. (2005) Successful extraction of DNA from 100-year-old herbarium specimens of the liverwort Bazzania trilobata . Taxon 54: 335336.CrossRefGoogle Scholar
May, K. J. & Ristaino, J. B. (2004) Identity of the mt DNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish Potato Famine. Mycological Research 108: 471479.CrossRefGoogle Scholar
Niu, C., Kebede, H., Auld, D. L., Woodward, J. E., Burow, G. & Wright, R. J. (2008) A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. African Journal of Biotechnology 7: 28182822.Google Scholar
Rogers, S. O. & Bendich, A. J. (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology 5: 6976.CrossRefGoogle ScholarPubMed
Sohrabi, M., Myllys, L. & Stenroos, S. (2010) Successful DNA sequencing of a 75 year-old herbarium specimen of Aspicilia aschabadensis (J. Steiner) Mereschk. Lichenologist 42: 626628.CrossRefGoogle Scholar
Soltis, P. S. & Soltis, P. E. (1993) Ancient DNA: prospects and limitations. New Zealand Journal of Botany. 31: 203209.CrossRefGoogle Scholar
Telle, S. & Thines, M. (2008) Amplification of cox2 (∼620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE 3: e3584.CrossRefGoogle Scholar
Ubaldi, M., Luciani, S., Marota, I., Fornaciari, G., Cano, R. J. & Rollo, F. (1998) Sequence analysis of bacterial DNA in the colon of an Andean mummy. American Journal of Physical Anthropology 107: 285295.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T. D., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar