Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T15:17:25.377Z Has data issue: false hasContentIssue false

New molecular data on Pyrenulaceae from Sri Lanka reveal two well-supported groups within this family

Published online by Cambridge University Press:  24 August 2012

Gothamie WEERAKOON
Affiliation:
Department of Botany, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
André APTROOT
Affiliation:
ABL Herbarium, Gerrit van der Veenstraat 107, NL–3762 XK Soest, The Netherlands
H. Thorsten LUMBSCH
Affiliation:
The Field Museum, Department of Botany, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
Patricia A. WOLSELEY
Affiliation:
The Natural History Museum, Department of Botany, Cromwell Road, London, SW7 5BD, UK. Email: [email protected]
S. Chandrani WIJEYARATNE
Affiliation:
Department of Botany, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
Cécile GUEIDAN*
Affiliation:
The Natural History Museum, Department of Botany, Cromwell Road, London, SW7 5BD, UK. Email: [email protected]

Abstract

Pyrenulaceae is one of the dominant lichen families in the tropics, especially in lowland evergreen forests. Although very species-rich, phylogenetic relationships within Pyrenulaceae have not been extensively studied using molecular data, and its morphology-based generic delimitation remains untested. A recent lichenological survey carried out in the Knuckles Mountain Range in Sri Lanka allowed the first author to collect fresh specimens of different species of Pyrenula, and to investigate the phylogenetic relationships within the family Pyrenulaceae using a multigene analysis (ITS, nuLSU and mtSSU) and a preliminary dataset of 21 taxa. This data shows that the family Pyrenulaceae can be divided into two well-supported groups and suggests that the genus Pyrenula is not monophyletic. Characters usually used for generic classification in this family (ascospore colour and septation, structure of the ascospore locules, secondary chemistry, hamathecium structure, ostiole position) do not correlate with these two groups. However, the presence of pseudocyphellae is restricted to species of Pyrenula from one group.

Type
Research Article
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aptroot, A. (2009) Diversity and endemism in the pyrenocarpous lichen families Pyrenulaceae and Trypetheliaceae in the Malesian flora region. Blumea 54: 145147.CrossRefGoogle Scholar
Aptroot, A. (2012) A world key to the species of Anthracothecium and Pyrenula . Lichenologist 44: 553.CrossRefGoogle Scholar
Aptroot, A., Lücking, R., Sipman, H. J. M., Umaña, L. & Chaves, J. L. (2008) Pyrenocarpous lichens with bitunicate asci. A first assessment of the lichen biodiversity inventory in Costa Rica. Bibliotheca Lichenologica 97: 1162.Google Scholar
Attanayaka, M. N. P. (2006) Studies on diversity and distribution of corticolous lichens as indicators of sulphur dioxide and nitrogen dioxide levels in Colombo and suburbs. M. Phil. thesis, University of Sri Jayewardenapura.Google Scholar
del Prado, R., Schmitt, I., Kautz, S., Palice, Z., Lücking, R. & Lumbsch, H. T. (2006) Molecular data place Trypetheliaceae in Dothideomycetes. Mycological Research 110: 511520.CrossRefGoogle ScholarPubMed
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Gueidan, C., Roux, C. & Lutzoni, F. (2007) Using a multigene analysis to assess generic delineation and character evolution in the Verrucariaceae (Eurotiomycetes, Ascomycota). Mycological Research 111: 11471170.CrossRefGoogle Scholar
Gueidan, C., Villaseñor, C. R., de Hoog, G. S., Gorbushina, A., Untereiner, W. A. & Lutzoni, F. (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Studies in Mycology 61: 111119.CrossRefGoogle ScholarPubMed
Harris, R. C. (1989) A sketch of the family Pyrenulaceae (Melanommatales) in eastern North America. Memoirs of the New York Botanical Garden 49: 74107.Google Scholar
James, T. Y., Kauff, F., Schoch, C., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., Miądlikowska, J., et al. (2006) Reconstructing the early evolution of the fungi using a six-gene phylogeny. Nature 443: 818822.CrossRefGoogle ScholarPubMed
Kirk, P. M., Cannon, P. F. & Stalpers, J. A. (2008) Dictionary of the Fungi. 10th edn. Wallingford: CAB International.Google Scholar
Komposch, H. & Hafellner, J. (2002) Life form diversity of lichenized fungi in an Amazon lowland rainforest. Bibliotheca Lichenologica 82: 311326.Google Scholar
Lumbsch, H. T. & Huhndorf, S. M. (2007) Whatever happened to the pyrenomycetes and loculoascomycetes? Mycological Research 111: 10641074.CrossRefGoogle Scholar
Lumbsch, H. T. & Huhndorf, S. M. (2010) Myconet volume 14. Fieldiana, Life and Earth Sciences 1: 164.CrossRefGoogle Scholar
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628651.CrossRefGoogle ScholarPubMed
Lutzoni, F., Kauff, F., Cox, C., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T., Baloch, E., et al. (2004) Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 14461480.CrossRefGoogle ScholarPubMed
Maddison, W. P. & Maddison, D. R. (2003) MacClade: Analysis of Phylogeny and Character Evolution. Version 4.6. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Mason-Gamer, R. & Kellogg, E. (1996) Testing for phylogenetic conflict among molecular datasets in the tribe Triticeae (Graminae). Systematic Biology 45: 524545.CrossRefGoogle Scholar
Nayanakantha, N. M. C. & Gajameragedara, S. (2003) A survey of lichens in the Kandy Municipal Region. Ceylon Journal of Science (Biological Sciences) 31: 3541.Google Scholar
Nelsen, M. P., Lücking, R., Grube, M., Mbatchou, J. S., Muggia, L., Rivas Plata, E. & Lumbsch, H. T. (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Studies in Mycology 64: 135144.CrossRefGoogle ScholarPubMed
Parguey-Leduc, A. (1973) Recherches préliminaires sur l'ontogénie et l'anatomie comparée des ascocarpes des pyrénomycètes ascohyméniaux. VI. Conclusions générales. Revue Mycologie 37: 6082.Google Scholar
Parguey-Leduc, A. & Janex-Favre, M. C. (1981) The ascocarps of ascohymenial pyrenomycetes. In Ascomycete Systematics. The Luttrellian Concept (Reynolds, D. R., ed.): 102123. New York: Springer-Verlag.CrossRefGoogle Scholar
Rehner, S. A. & Samuels, G. J. (1994) Taxonomy and phylogeny of Gliocladium analyzed by large subunit rDNA sequences. Mycological Research 98: 625634.CrossRefGoogle Scholar
Rivas Plata, E., Lücking, R. & Lumbsch, H. T. (2008) When family matters: an analysis of Thelotremataceae (lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodiversity and Conservation 17: 13191351.CrossRefGoogle Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Schoch, C. L., Sung, G.-H., López-Giráldez, F., Townsend, J. P., Miądlikowska, J., Hofstetter, V., Robbertse, B., Matheny, P. B., Kauff, F., Wang, Z., et al. (2009) The Ascomycota Tree of Life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224239.CrossRefGoogle ScholarPubMed
Singh, K. P. & Sinha, G. P (2010) Indian Lichens: an Annotated Checklist. Kolkata: Botanical Survey of India, Ministry of Environment and Forests.Google Scholar
Sipman, H. J. M. & Harris, R. C. (1989) Lichens. In Tropical Rain Forest Ecosystems (Lieth, H. & Werger, M. J. A., eds): 303309. Amsterdam: Elsevier Science Publishers.CrossRefGoogle Scholar
Stamatakis, A., Ludwig, T. & Meier, H. (2005) A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456463.CrossRefGoogle ScholarPubMed
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57: 758771.CrossRefGoogle ScholarPubMed
Swofford, D. L. (1999) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods) Version 4.0b10. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.CrossRefGoogle ScholarPubMed
Weerakoon, G. (2010) New frontiers for lichenology in Sri Lanka. British Lichen Society Bulletin 107: 6270.Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. New York: Academic Press.Google Scholar
Wijeyaratne, S. C. (2003) Studies on the diversity and distribution of lichens and monitoring air quality on Ritigala Mountain and its vicinity. Final Report submitted to National Science Foundation of Sri Lanka.Google Scholar
Zolan, M. E. & Pukkila, P. J. (1986) Inheritance of DNA methylation in Coprinus cinereus . Molecular and Cellular Biology 6: 195200.Google ScholarPubMed
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar