Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T03:44:19.836Z Has data issue: false hasContentIssue false

A new Bunodophoron species (Sphaerophoraceae, Lecanorales) from the Neotropics

Published online by Cambridge University Press:  08 May 2018

Edier SOTO MEDINA
Affiliation:
Grupo de Ecología y Diversidad Vegetal, Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Valle, Calle 13 N° 100-00, Cali, Colombia
Maria PRIETO
Affiliation:
Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/ Tulipan s/n, E-28933 Mostoles, Madrid, Spain; and Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden
Mats WEDIN*
Affiliation:
Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden.
*
(corresponding author): Email: [email protected]

Abstract

This is the first part of an ongoing taxonomic treatment of Bunodophoron (Sphaerophoraceae, Lecanorales) in the Neotropics, based on the molecular phylogenetic analysis of three markers together with studies of morphology and chemistry, and using the general mixed Yule coalescence (GMYC) method to delimit species boundaries. In the Neotropics, species in this genus grow on the ground or on shrubs in the páramos, and as epiphytes in the montane rainforests. We describe here a new species from the páramos of Colombia, Bunodophoron crespoae Soto, M. Prieto & Wedin sp. nov., and discuss its distinction from another large and common páramo species Bunodophoron flabellatum (Hue) Soto, M. Prieto & Wedin comb. nov. Both species are primarily terrestrial in the páramos, although B. flabellatum may occasionally also grow as an epiphyte. Bunodophoron crespoae is characterized by the white, c. 10–13 cm long, subterete to narrowly flattened, main branches. It differs from the otherwise similar B. flabellatum by being distinctly subterete, more abundantly branched, and by having smaller ascospores. Both are distinguished from the primarily epiphytic B. melanocarpum by the considerably larger thallus size, with the main branches of B. melanocarpum rarely exceeding 3·5 cm in length and 2 mm in width.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arup, U., Ekman, S., Lindblom, L. & Mattsson, J.-E. (1993) High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. Lichenologist 25: 6171.CrossRefGoogle Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google Scholar
Döring, H. & Wedin, M. (2000) Homology assessment of the boundary tissue in fruiting bodies of the lichen family Sphaerophoraceae (Lecanorales, Ascomycota). Plant Biology 2: 361367.Google Scholar
Döring, H., Henssen, A. & Wedin, M. (1999) Ascomata development in Neophyllis melacarpa, with notes on the systematic position of the genus. Australian Journal of Botany 47: 783794.CrossRefGoogle Scholar
Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.CrossRefGoogle ScholarPubMed
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 19691973.CrossRefGoogle ScholarPubMed
Ezard, T., Fujisawa, T. & Barraclough, T. (2009) splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-11/r29. Available at: http://r-forge.r-project.org/projects/splits/ (Accessed 20 July 2017).Google Scholar
Fujisawa, T. & Barraclough, T. G. (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 65: 707724.CrossRefGoogle Scholar
González, Y., Aragón, G., Benitez, A. & Prieto, M. (2017) Changes in soil cryptogamic communities in tropical Ecuadorean páramos. Community Ecology 18: 1120.Google Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.Google Scholar
Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160174.Google Scholar
Henssen, A., Döring, H. & Kantvilas, G. (1992) Austropeltum glareosum gen. et sp. nov., a new lichen from mountain plateaux in Tasmania and New Zealand. Botanica Acta 105: 457467.CrossRefGoogle Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
Kantvilas, G. & Wedin, M. (1992) A new species of Sphaerophorus (Caliciales) with a revised key to the genus in Tasmania. Nova Hedwigia 54: 493502.Google Scholar
Lücking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P. M., Bungartz, F., Moncada, B., Yánez-Ayabaca, A., Chaves, J. L., Coca, L. F. & Lawrey, J. D. (2014) A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences of the Unites States of America 111: 1109111096.Google Scholar
Lumbsch, H. T., Ahti, T., Altermann, S., Amo de Paz, G., Aptroot, A., Arup, U., Bárcenas Peña, A., Bawingan, P. A., Benatti, M. N., Betancourt, L., et al. (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18: 1127.Google Scholar
Maddison, W. P. & Maddison, D. R. (2001) MacClade: Analysis of Phylogeny and Character Evolution, Version 4.01. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.Google Scholar
Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T. G. et al. (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298311.Google Scholar
Myllys, L., Lohtander, K. & Tehler, A. (2001) Beta-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia . Mycologia 93: 335343.Google Scholar
Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289290.Google Scholar
Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., Vogler, A. P. & Hedin, M. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595609.CrossRefGoogle ScholarPubMed
Prieto, M., Baloch, E., Tehler, A. & Wedin, M. (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29: 296308.CrossRefGoogle ScholarPubMed
R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ Google Scholar
Rambaut, A. & Drummond, A. J. (2007) Tracer v.1.4. Available at: http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Rodríguez, F., Oliver, J. F., Marin, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.CrossRefGoogle ScholarPubMed
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2011) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Sipman, H. J. M. (1999) Checklist of Páramo plants – Lichenes. Memoirs of the New York Botanical Garden 84: 4153.Google Scholar
Sipman, H. J. M. (2002) The significance of the northern Andes for lichens. The Botanical Review 68: 8899.Google Scholar
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.Google Scholar
Stiller, J. W. & Hall, B. D. (1997) The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences of the United States of America 94: 45204525.Google Scholar
Tibell, L. (1981) Formation of spore ornamentation in two Sphaerophorus species. Nordic Journal of Botany 1: 333340.Google Scholar
Tibell, L. (1982) Caliciales of Costa Rica. Lichenologist 14: 219254.CrossRefGoogle Scholar
Tibell, L. (1984) A reappraisal of the taxonomy of Caliciales . Nova Hedwigia, Beiheft 79: 597713.Google Scholar
Tibell, L. (1987) Australasian Caliciales . Symbolae Botanicae Upsalienses 27 (1): 1279.Google Scholar
Wedin, M. (1990) Ascocarp and spore ontogeny in two species of Sphaerophorus (Caliciales). Nordic Journal of Botany 10: 539545.CrossRefGoogle Scholar
Wedin., M. (1991) Spore ontogeny of Sphaerophorus diplotypus and S. fragilis . In Tropical Lichens: Their Systematics, Conservation, and Ecology (Systematics Association Special Vol. 43 (D. J. Galloway, ed): 245251. Oxford: Clarendon Press.Google Scholar
Wedin, M. (1992) Taxonomic and distributional notes on the genus Sphaerophorus (Caliciales) in the Southern Hemisphere. Lichenologist 24: 119131.Google Scholar
Wedin, M. (1993) A phylogenetic analysis of Sphaerophoraceae (Caliciales); a new generic classification and notes on character evolution. Plant Systematics and Evolution 187: 213241.Google Scholar
Wedin, M. (1995 a) The lichen family Sphaerophoraceae (Caliciales, Ascomycotina) in temperate areas of the Southern Hemisphere. Symbolae Botanicae Upsaliensis 31: 1102.Google Scholar
Wedin, M. (1995 b) Bunodophoron melanocarpum, comb. nov. (Sphaerophoraceae, Caliciales s. lat.). Mycotaxon 55: 383384.Google Scholar
Wedin, M. (2002) The genus Calycidium Stirt. Lichenologist 34: 6369.Google Scholar
Wedin, M. & Döring, H. (1999) The phylogenetic relationship of the Sphaerophoraceae, Neophyllis and Austropeltum (lichenized Ascomycota) inferred by SSU rDNA sequences. Mycological Research 103: 11311137.CrossRefGoogle Scholar
Wedin, M. & Tibell, L. (1991) Two new species of Sphaerophorus (Caliciales) from New Zealand. New Zealand Journal of Botany 29: 287293.CrossRefGoogle Scholar
Wedin, M., Tehler, A. & Gargas, A. (1998) Phylogenetic relationships of Sphaerophoraceae (Ascomycetes) inferred from SSU rDNA sequences. Plant Systematics and Evolution 209: 7583.Google Scholar
Wedin, M., Döring, H. & Ekman, S. (2000) Molecular phylogeny of the lichen families Cladoniaceae, Sphaerophoraceae, and Stereocaulaceae (Lecanorales, Ascomycotina). Lichenologist 32: 171187.Google Scholar
Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2004) AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available at: http://ceb.csit.fsu.edu/awty.Google Scholar