Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T16:11:42.389Z Has data issue: false hasContentIssue false

Life history strategy of Lepraria borealis at an Antarctic inland site, Coal Nunatak

Published online by Cambridge University Press:  25 March 2010

Andreas ENGELEN
Affiliation:
Institute of Botany, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany. Email: [email protected]
Peter CONVEY
Affiliation:
British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, England, UK.
Sieglinde OTT
Affiliation:
Institute of Botany, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany. Email: [email protected]

Abstract

Coal Nunatak is an ice-free inland nunatak located on southern Alexander Island, adjacent to the west coast of the Antarctic Peninsula. Situated close to the Antarctic continent, it is characterized by harsh environmental conditions. Macroscopic colonization is restricted to micro-niches offering suitable conditions for a small number of lichens and mosses. The extreme environmental conditions place particular pressures on colonizers. Lepraria borealis is the dominant crustose lichen species present on Coal Nunatak, and shows distinctive features in its life history strategy, in particular expressing unusually low selectivity of the mycobiont towards potential photobionts. To assess selectivity, we measured algal DNA sequence polymorphism in a region of 480–660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. We identified three different photobiont species, belonging to two different genera. We interpret this strategy as being advantageous in facilitating the colonization and community dominance of L. borealis under the isolation and extreme environmental conditions of Coal Nunatak.

Type
Research Article
Copyright
Copyright © British Lichen Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, A. (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31: 501510.Google Scholar
Beck, A., Kasalicky, G. & Rambold, G. (2002) Myco-photobiontal selection in a mediterranean cryptogam community with Fulgensia fulgida. New Phytologist 153: 317326.Google Scholar
Bednark-Ochyra, H., Vána, J., Ochyra, L. & Smith, R. I. L. (2000) The Liverwort Flora of Antarctica. Cracow: Polish Academy of Sciences.Google Scholar
Brinkmann, M., Pearce, D. A., Convey, P. & Ott, S. (2007) The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biology 30: 15051511.Google Scholar
British Antarctic Survey (2004) Antarctica, 1:10 000 000 scale map. BAS (Misc) 11. Cambridge: British Antarctic Survey.Google Scholar
Bronstein, J. L. (1994) Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution 9: 214217.CrossRefGoogle ScholarPubMed
Crespo, A., Arguello, A., Lumbsch, H. T., Llimona, X. & Tønsberg, T. (2006) A new species of Lepraria (Lecanorales: Stereocaulaceae) from the Canary Islands and the typification of Lepraria isidiata. Lichenologist 38: 213221.Google Scholar
Engelen, A., Convey, P., Hodgson, D. A., Worland, M. R. & Ott, S. (2008) Soil properties of an Antarctic inland site: implications for ecosystem development. Polar Biology 31: 14531460.CrossRefGoogle Scholar
Friedl, T. (1987) Aspects of thallus development in the parasitic lichen Diploschistes muscorum. Bibliotheca Lichenologica 25: 9597.Google Scholar
Friedl, T. (1996) Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear encoded DNA Sequences and motile cell ultrastructure. Phycologia 35: 456469.Google Scholar
Friedl, T. & Rokitta, C. (1997) Species relationships in the lichen genus Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23: 125148.Google Scholar
Galun, M. (1988) Lichenization. In CRC Handbook of Lichenology II (Galun, M., ed.): 153169. Boca Raton: CRC Press.Google Scholar
Helms, G., Friedl, T., Rambold, G. & Mayrhofer, H. (2001) Identification of photobionts from lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33: 7386.Google Scholar
Kanda, H., Ohtani, S. & Imura, S. (2002) Plant communities at Dronning Maud Land. In Ecological Studies 154. Geoecology of Antarctic Ice-Free Coastal Landscapes (Beyer, L. & Bölter, M., eds): 249264. Berlin, Heidelberg: Springer.Google Scholar
Kappen, L. & Lange, O. L. (1969) Cold resistance of lichens. Cryobiology 6: 267.Google Scholar
Kroken, S. & Taylor, J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103: 645650.CrossRefGoogle Scholar
Lawley, B., Ripley, S., Bridge, P. & Convey, P. (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Applied and Environmental Microbiology 70: 59635972.Google Scholar
Longton, R. E. (1988) Biology of Polar Bryophytes and Lichens. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nelsen, M.P. & Gargas, A. (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264275.Google Scholar
Ochyra, R. (1998) The Moss Flora of King George Island, Antarctica. Cracow: Polish Academy of Sciences.Google Scholar
Olech, M. (2002) Plant communities on King George Island. In Ecological Studies 154. Geoecology of Antarctic Ice-Free Coastal Landscapes (Beyer, L. & Bölter, M., eds): 215231. Berlin, Heidelberg: Springer.Google Scholar
Ott, S. & Scheidegger, C. (1992): The role of parasitism in the co-development and colonization of Peltula euploca and Glyphopeltis ligustica. Symbiosis 12: 159172.Google Scholar
Ott, S., Meier, T. & Jahns, H. M. (1995) Development, regeneration, and parasitic interactions between the lichens Fulgensia bracteata and Toninia caeruleonigricans. Canadian Journal of Botany 73: 595602.CrossRefGoogle Scholar
Øvstedal, D. O. & Smith, R. I. L. (2001) Lichens of Antarctica and South Georgia. A Guide to Their Identification and Ecology. Cambridge: CambridgeUniversity Press.Google Scholar
Peck, L. S., Convey, P. & Barnes, D. K. A. (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biological Reviews of the Cambridge Philosophical Society 81: 75109.Google Scholar
Piercey-Normore, M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytologist 169: 331344.Google Scholar
Piercey-Normore, M. D. & DePriest, P. T. (2001) Algal switching among lichen symbioses. American Journal of Botany 8: 14901498.Google Scholar
Rambold, G., Friedl, T. & Beck, A. (1998) Photobionts in lichens: possible indicators of phylogenetic relationships? Bryologist 101: 392397.CrossRefGoogle Scholar
Romeike, J., Friedl, T., Helms, G. & Ott, S. (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized Ascomycetes) along a transect of the Antarctic Peninsula. Molecular Biology and Evolution 19: 12091217.Google Scholar
Schaper, T. & Ott, S. (2003) Photobiont selectivity and interspecific interactions in lichen communities. I. Culture experiments with the mycobiont Fulgensia bracteata. Plant Biology 5: 441450.Google Scholar
Seppelt, R. (2002) Plant communities at Wilkes Land. In Ecological Studies 154. Geoecology of Antarctic Ice-Free Coastal Landscapes (Beyer, L. & Bölter, M., eds): 233248. Berlin, Heidelberg: Springer.Google Scholar
Smith, R. I. L. (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In Antarctic Ecology (Laws, R. M., ed.): 61162. London: Academic Press.Google Scholar
Smith, R. I. L. (1993) Dry coastal ecosystems of Antarctica. In Ecosystems of the world, Dry Coastal Ecosystems, Polar Regions and Europe (van der Maarle, E., ed.): 5171. Amsterdam: Elsevier.Google Scholar
White, T. J., Burns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications (Innis, M., Gelfand, D., Sninsky, J., White, T. & Orlando, F. L., eds): 315322. London: Academic Press.Google Scholar
Wynn-Williams, D. D. (1993) Microbial processes and the initial stabilisation of fellfield soil. In Primary Succession on Land (Miles, J. & Walton, D. W. H., eds): 1732. Oxford: Blackwell.Google Scholar
Yahr, R., Vilgalys, R. & DePriest, P. T. (2004) Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13: 33673378.Google Scholar
Yahr, R., Vilgalys, R. & DePriest, P. T. (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171: 847860.CrossRefGoogle ScholarPubMed