Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T11:04:15.515Z Has data issue: false hasContentIssue false

The lichen genus Kroswia is a synonym of Fuscopannaria (Pannariaceae)

Published online by Cambridge University Press:  29 January 2015

Nicolas MAGAIN
Affiliation:
Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium. Email : [email protected]
Emmanuël SÉRUSIAUX
Affiliation:
Evolution and Conservation Biology, University of Liège, Sart Tilman B22, B-4000 Liège, Belgium. Email : [email protected]

Abstract

Molecular inferences of three loci within a phylogenetic framework of a subset of the Pannariaceae confirm that the genus Kroswia is nested within the genus Fuscopannaria. The formal combination of the type species of Kroswia into Fuscopannaria is therefore made here, and Kroswia is reduced into synonymy with the latter genus.

Type
Articles
Copyright
Copyright © British Lichen Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baloch, E. & Grube, M. (2006) Evolution and phylogenetic relationships within Porinaceae (Ostropomycetidae), focusing on foliicolous species. Mycological Research 110: 125136.Google Scholar
Carlsen, T., Bendiksby, M., Hofton, T. H., Reiso, S., Bakkestuen, V., Haugan, R., Kauserud, H. & Timdal, E. (2012) Species delimitation, bioclimatic range, and conservation status of the threatened lichen Fuscopannaria confusa . Lichenologist 44: 565575.Google Scholar
Casano, L. M., del Campo, E. M., Garcia-Breijo, F. J., Reig-Armiñana, J., Gasulla, F., Del Hoyo, A., Guéra, A. & Barreno, E. (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli Ramalina farinacea. Coexistence versus competition? Environmental Microbiology 13: 806818.CrossRefGoogle ScholarPubMed
Del Campo, E. M., Catalá, S., Gimeno, J., del Hoyo, A., Martínez-Alberola, F., Casano, L. M., Grube, M. & Barreno, E. (2013) The genetic structure of the cosmopolitan three-partner lichen Ramalina farinacea evidences the concerted diversification of symbionts. FEMS Microbiology Ecology 83: 310323.CrossRefGoogle ScholarPubMed
Ekman, S., Wedin, M., Lindblom, L. & Jørgensen, P. M. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae . Lichenologist 46: 627656.CrossRefGoogle Scholar
Elvebakk, A., Robertsen, E. H., Park, C. H. & Hong, S. G. (2010) Psorophorus and Xanthopsoroma, two new genera for yellow-green, corticolous and squamulose lichen species, previously in Psoroma . Lichenologist 42: 563585.CrossRefGoogle Scholar
Fernández-Mendoza, F., Domaschke, S., García, M. A., Jordan, P., Martín, M. P. & Printzen, C. (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . Molecular Ecology 20: 12081232.Google Scholar
Henskens, F. L., Green, T. G. & Wilkins, A. (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Annals of Botany 110: 555563.CrossRefGoogle Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.Google Scholar
Jørgensen, P. M. (2002) Kroswia, a new genus in the Pannariaceae (lichenized ascomycetes). Lichenologist 34: 297303.CrossRefGoogle Scholar
Jørgensen, P. M. (2003) Conspectus familiae Pannariaceae (Ascomycetes lichenosae). Ilicifolia 4: 179.Google Scholar
Jørgensen, P. M. (2007 a) New discoveries in Asian pannariaceous lichens. Lichenologist 39: 235243.CrossRefGoogle Scholar
Jørgensen, P. M. (2007 b) Pannariaceae . Nordic Lichen Flora 3: 96112.Google Scholar
Jørgensen, P. M. & Gjerde, I. (2012) Notes on some pannariaceous lichens from New Caledonia. Cryptogamie, Mycologie 33: 39.Google Scholar
Jørgensen, P. M. & Sipman, H. (2006) The lichen family Pannariaceae in the montane regions of New Guinea. Journal of the Hattori Botanical Laboratory 100: 695720.Google Scholar
Jørgensen, P. M. & Wedin, M. (1999) On Psoroma species from the Southern Hemisphere with cephalodia producing vegetative dispersal units. Lichenologist 31: 341347.Google Scholar
Jørgensen, P. M., Ekman, S. & Wedin, M. (2013) (2143) Proposal to conserve the name Fuscopannaria against Moelleropsis (lichenized Ascomycota). Taxon 62: 629.CrossRefGoogle Scholar
Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 16951701.CrossRefGoogle ScholarPubMed
Maddison, D. & Maddison, W. (2005) MacClade v. 4.08. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Magain, N. & Sérusiaux, E. (2014) Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS ONE 9(2): e89876.Google Scholar
Miądlikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V., Hodkinson, B. P., Kukwa, M., Lücking, R. et al. (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98: 10881103.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 18.Google Scholar
Nelsen, M. P. & Gargas, A. (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264275.CrossRefGoogle ScholarPubMed
Nylander, J. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.Google Scholar
Otálora, M. A. G., Aragón, G., Molina, M. C., Martínez, I. & Lutzoni, F. (2010) Disentangling the Collema-Leptogium complex through a molecular phylogenetic study of the Collemataceae (Peltigerales, lichen-forming Ascomycota). Mycologia 102: 279290.Google Scholar
Passo, A., Stenroos, S. & Calvelo, S. (2008) Joergensenia, a new genus to accommodate Psoroma cephalodinum (lichenized Ascomycota). Mycological Research 112: 14651474.CrossRefGoogle ScholarPubMed
Printzen, C., Domaschke, S., Fernández-Mendoza, F. & Pérez-Ortega, S. (2013) Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6: 3353.CrossRefGoogle Scholar
Rambaut, A. & Drummond, A. (2007) Tracer. Version 1.5. Available at http://tree.bio.ed.ac.uk Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690. Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57: 758771.CrossRefGoogle ScholarPubMed
Wedin, M., Wiklund, E., Jørgensen, P. M. & Ekman, S. (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53: 862871.Google Scholar