Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T12:38:52.215Z Has data issue: false hasContentIssue false

Hydration traits in cephalolichen members of the epiphytic old forest genus Lobaria (s. lat.)

Published online by Cambridge University Press:  19 September 2017

Sara LONGINOTTI
Affiliation:
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
Knut Asbjørn SOLHAUG
Affiliation:
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
Yngvar GAUSLAA*
Affiliation:
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.

Abstract

This study aims to quantify the size-dependency of important hydration traits in Lobaria amplissima, L. pulmonaria and L. virens sampled in sympatric populations on deciduous tree trunks in southern Norway, and to discuss possible implications of species-specific traits for the ecological niches of these old forest cephalolichens. Traits measured were thallus size (area and mass), specific thallus mass (STM), internal (WHCinternal) and external water-holding capacity (WHCexternal), and water content (WC) after shaking and after blotting. Lobaria amplissima had the highest WHCinternal, 2·6 times higher than L. pulmonaria with the lowest WHCinternal. WHCinternal, driven by STM, strongly depended on size. WHCexternal was 28% (L. virens) to 47% (L. pulmonaria) of the WHCinternal. Unlike WHCinternal, WHCexternal did not depend on thallus area, meaning that WHCexternal is proportionally higher for smaller compared with larger thalli. The most widespread species, L. pulmonaria, benefits from a flexible hydration strategy due to low STM, facilitating the use of more diverse water sources than the other two species that depend more on rain, particularly L. amplissima with the highest STM and thus relatively high WHCinternal. For L. virens, a combination of less specialized hydration traits and a low tolerance to higher light intensity probably jeopardizes its survival outside rainforest habitats.

Type
Articles
Copyright
© British Lichen Society, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoine, M. E. (2004) An ecophysiological approach to quantifying nitrogen fixation by Lobaria oregana . Bryologist 107: 8287.Google Scholar
ArtDatabanken, (2015) Red-listed Species in Sweden. Uppsala: ArtDatabanken SLU.Google Scholar
Asplund, J. & Wardle, D. A. (2016) How lichens impact on terrestrial community and ecosystem properties. Biological Reviews, DOI: 10.1111/brv.12305. Google Scholar
Asplund, J., Larsson, P., Vatne, S. & Gauslaa, Y. (2010) Gastropod grazing shapes the vertical distribution of epiphytic lichens in forest canopies. Journal of Ecology 98: 218225.Google Scholar
Barták, M., Solhaug, K. A., Vrábliková, H. & Gauslaa, Y. (2006) Curling during desiccation protects the foliose lichen Lobaria pulmonaria against photoinhibition. Oecologia 149: 553560.Google Scholar
Bidussi, M. & Gauslaa, Y. (2015) Relative growth rates and secondary compounds in epiphytic lichens along canopy height gradients in forest gaps and meadows in inland British Columbia. Botany 93: 123131.Google Scholar
Bidussi, M., Goward, T. & Gauslaa, Y. (2013) Growth and secondary compound investments in the epiphytic lichens Lobaria pulmonaria and Hypogymnia occidentalis transplanted along an altitudinal gradient in British Columbia. Botany 91: 621630.CrossRefGoogle Scholar
Degelius, G. (1940) Contibutions to the lichen flora of North America. I. Lichens from Maine. Arkiv för Botanik 30A (1):162.Google Scholar
Ellis, C. J. (2012) Lichen epiphyte diversity: a species, community and trait-based review. Perspectives in Plant Ecology Evolution and Systematics 14: 131152.Google Scholar
Ellis, C. J. (2016) Oceanic and temperate rainforest climates and their epiphyte indicators in Britain. Ecological Indicators 70: 125133.Google Scholar
Esseen, P.-A., Olsson, T., Coxson, D. & Gauslaa, Y. (2015) Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecology 18: 2635.Google Scholar
Esseen, P.-A., Rönnqvist, M.1, Gauslaa, Y. & Coxson, D.S (2017) Externally held water – a key factor for hair lichens in boreal forest canopies. Fungal Ecology (in press).Google Scholar
Färber, L., Solhaug, K. A., Esseen, P.-A., Bilger, W. & Gauslaa, Y. (2014) Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies. Ecology 95: 14641471.Google Scholar
Gauslaa, Y. (2002) Die back of epiphytic lichens in SE Norway – can it be caused by high rainfall in late autumn? Graphis Scripta 13: 3335.Google Scholar
Gauslaa, Y. (2014) Rain, dew, and humid air as drivers of lichen morphology, function and spatial distribution in epiphytic lichens. Lichenologist 46: 116.Google Scholar
Gauslaa, Y. & Coxson, D. (2011) Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89: 787798.Google Scholar
Gauslaa, Y. & Goward, T. (2012) Relative growth rates of two epiphytic lichens, Lobaria pulmonaria and Hypogymnia occidentalis, transplanted within and outside of Populus dripzones. Botany 90: 954965.Google Scholar
Gauslaa, Y. & Solhaug, K. A. (1996) Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Functional Ecology 10: 344354.CrossRefGoogle Scholar
Gauslaa, Y. & Solhaug, K. A. (1998) The significance of thallus size for the water economy of the cyanobacterial old forest lichen Degelia plumbea . Oecologia 116: 7684.Google Scholar
Gauslaa, Y. & Solhaug, K. A. (2001) Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria . Oecologia 126: 462471.Google Scholar
Gauslaa, Y., Lie, M., Solhaug, K. A. & Ohlson, M. (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147: 406416.Google Scholar
Gauslaa, Y., Coxson, D. S. & Solhaug, K. A. (2012) The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytologist 195: 812822.Google Scholar
Gilbert, O. L. (2002) A transplant operation involving Lobaria amplissima; the first twenty years. Lichenologist 34: 267269.Google Scholar
Giordani, P., Incerti, G., Rizzi, G., Rellini, I., Nimis, P. L. & Modenesi, P. (2014) Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. Journal of Vegetation Science 25: 778792.Google Scholar
Green, T. G. A., Horstmann, J., Bonnett, H., Wilkins, A. & Silvester, W. B. (1980) Nitrogen fixation by members of the Stictaceae (Lichenes) of New Zealand. New Phytologist 84: 339348.Google Scholar
Green, T. G. A., Snelgar, W. P. & Wilkins, A. L. (1985) Photosynthesis, water relations and thallus structure of Stictaceae lichens. In Lichen Physiology and Cell Biology (D. H. Brown, ed.): 5775. New York: Plenum Press.Google Scholar
Green, T. G. A., Sancho, L. G. & Pintado, A. (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. Ecological Studies 215: 89120.Google Scholar
Hale, M. E. (1957) The Lobaria amplissimaL. quercizans complex in Europe and North America. Bryologist 60: 3539.Google Scholar
Hartard, B., Cuntz, M., Máguas, C. & Lakatos, M. (2009) Water isotopes in desiccating lichens. Planta 231: 179193.CrossRefGoogle ScholarPubMed
Heber, U., Bilger, W., Türk, R. & Lange, O. L. (2010) Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria . New Phytologist 185: 459470.Google Scholar
Honegger, R. & Peter, M. (1994) Routes of solute translocation and the location of water in heteromerous lichens visualized with cryotechniques in light and electron microsopy. Symbiosis 16: 167186.Google Scholar
Jacobs, A. F. G., Heusinkveld, B. G. & Berkowicz, S. M. (2002) A simple model for potential dewfall in an arid region. Atmospheric Research 64: 285295.Google Scholar
Jacobs, A. F. G., Heusinkveld, B. G., Kruit, R. J. W. & Berkowicz, S. M. (2006) Contribution of dew to the water budget of a grassland area in the Netherlands. Water Resources Research 42: W03415.CrossRefGoogle Scholar
Jordan, W. P. (1973) The genus Lobaria in North America north of Mexico. Bryologist 76: 225251.Google Scholar
Kershaw, K. A. (1985) Physiological Ecology of Lichens. Cambridge: Cambridge University Press.Google Scholar
Kranner, I., Beckett, R. P., Hochman, A. & Nash, T. H. III (2008) Desiccation-tolerance in lichens: a review. Bryologist 111: 576593.Google Scholar
Lakatos, M. (2011) Lichens and bryophytes: habitat and species. Ecological Studies 215: 6585.CrossRefGoogle Scholar
Lange, O. L. (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation - III. Diel, seasonal, and annual carbon budgets. Flora 198: 277292.Google Scholar
Lange, O. L. & Green, T. G. A. (1996) High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural conditions. Oecologia 108: 1320.CrossRefGoogle ScholarPubMed
Lange, O. L., Kilian, E. & Ziegler, H. (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71: 104110.Google Scholar
Larson, D. W. (1981) Differential wetting in some lichens and mosses: the role of morphology. Bryologist 84: 115.Google Scholar
Larson, D. W. (1987) The absorption and release of water by lichens. Bibliotheca Lichenologica 25: 351360.Google Scholar
Larson, D. W. & Kershaw, K. A. (1976) Studies on lichen-dominated systems. XVIII. Morphological control of evaporation in lichens. Canadian Journal of Botany 54: 20612073.Google Scholar
Larsson, P. & Gauslaa, Y. (2011) Rapid juvenile development in old forest lichens. Botany 89: 6572.Google Scholar
Lidén, M., Jonsson Cabrajic, A. V., Ottosson-Löfvenius, M., Palmqvist, K. & Lundmark, T. (2010) Species-specific activation time-lags can explain habitat restrictions in hydrophilic lichens. Plant Cell and Environment 33: 851862.Google Scholar
MacDonald, A. & Coxson, D. (2013) A comparison of Lobaria pulmonaria population structure between subalpine fir (Abies lasiocarpa) and mountain alder (Alnus incana) host-tree species in British Columbia’s inland temperate rainforest. Botany 91: 545–544.Google Scholar
Martínez, I., Aragon, G., Sarrion, F. J., Escudero, A., Burgaz, A. R. & Coppins, B. J. (2003) Threatened lichens in central Spain (saxicolous species excluded). Cryptogamie Mycologie 24: 7397.Google Scholar
Matos, P., Pinho, P., Aragón, G., Martínez, I., Nunes, A., Soares, A. M. V. M. & Branquinho, C. (2015) Lichen traits responding to aridity. Journal of Ecology 103: 451458.CrossRefGoogle Scholar
Merinero, S., Hilmo, O. & Gauslaa, Y. (2014) Size is a main driver for hydration traits in cyano- and cephalolichens of boreal rainforest canopies. Fungal Ecology 7: 5966.Google Scholar
Merinero, S., Martínez, I., Rubio-Salcedo, M. & Gauslaa, Y. (2015) Proximity to the ground boosts epiphytic lichen growth in Mediterranean forests. Basic and Applied Ecology 55: 5964.Google Scholar
Moncada, B., Lücking, R. & Betancourt-Macuase, L. (2013) Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella . Lichenologist 45: 203263.Google Scholar
Nascimbene, J., Casazza, G., Benesperi, R., Catalano, I., Cataldo, D., Grillo, M., Isocrono, D., Matteucci, E., Ongaro, S., Potenza, G., et al. (2016) Climate change fosters the decline of epiphytic Lobaria species in Italy. Biological Conservation 201: 377384.Google Scholar
Nordén, B. & Appelqvist, T. (2001) Conceptual problems of ecological continuity and its bioindicators. Biodiversity and Conservation 10: 779791.Google Scholar
Pettersson, R. B., Ball, J. P., Renhorn, K. E., Esseen, P.-A. & Sjöberg, K. (1995) Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. Biological Conservation 74: 5763.Google Scholar
Richards, K. (2002) Hardware scale modelling of summertime patterns of urban dew and surface moisture in Vancouver, BC, Canada. Atmospheric Research 64: 313321.CrossRefGoogle Scholar
Rose, F. (1976) Lichenological indicators of age and environmental continuity in woodlands. In Lichenology: Progress and Problems (D. H. Brown, ed.): 279307. London: Academic Press.Google Scholar
Scheidegger, C., Clerc, P., Dietrich, M., Frei, M., Groner, U., Keller, C., Roth, I., Stofer, S. & Vust, M. (2002) Rote Liste der gefährdeten Arten der Schweiz: Baum-und erdbewohnende Flechten. Bern: Bundesamt für Umwelt, Wald und Landschaft BUWAL; Birmensdorf, Eidgenössische Forschungsanstalt WSL; Conservatoire et Jardin botaniques de la Ville de Genève CJBG.Google Scholar
Schlensog, M., Schroeter, B. & Green, A. T. G. (2000) Water dependent photosynthetic activity of lichens from New Zealand: differences in the green algal and the cyanobacterial thallus parts of photosymbiodemes. Bibliotheca Lichenologica 75: 149160.Google Scholar
Smith, P. L. (2014) Lichen translocation with reference to species conservation and habitat restoration. Symbiosis 62: 1728.Google Scholar
Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheimer, E., Toome-Heller, M., Thor, G. et al. (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353: 488492.Google Scholar
Timdal, E. (2015) Lav (Lichenes). In Norsk Rødliste for Arter 2015 (S. Henriksen & O. Hilmo, eds): 125137. Norway: Artsdatabanken.Google Scholar
Timdal, E. (2017) Norwegian Lichen Database. Available at: http://nhm2.uio.no/lav/web/index.html. Accessed January 2017.Google Scholar
Tønsberg, T., Blom, H. H., Goffinet, B., Holtan-Hartwig, J. & Lindblom, L. (2016) The cyanomorph of Ricasolia virens comb. nov. (Lobariaceae, lichenized Ascomycetes). Opuscula Philolichenum 15: 1521.Google Scholar
Türk, R. & Hafellner, J. (1999) Rote Liste gefährdeter Flechten (Lichenes) Österreichs. 2. Fassung. In Rote Listen gefährdeter Pflanzen Österreich (H. Niklfield, ed.): 187228. Graz: Austria Medien Service.Google Scholar
Van Stan, J. T. II & Pypker, T. G. (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical alteration of precipitation. Science of the Total Environment 536: 813824.Google Scholar
Xiao, H., Meissner, R., Seeger, J., Rupp, H., Borg, H. & Zhang, Y. (2013) Analysis of the effect of meteorological factors on dewfall. Science of the Total Environment 452–453: 384393.Google Scholar