Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T15:57:23.109Z Has data issue: false hasContentIssue false

The genus Dirina (Roccellaceae, Arthoniales) revisited

Published online by Cambridge University Press:  24 June 2013

Anders TEHLER
Affiliation:
Naturhistoriska riksmuseet, Enheten för kryptogambotanik, Box 50007 S-104 05 Stockholm, Sweden. Email: [email protected]
Damien ERTZ
Affiliation:
Jardin Botanique National de Belgique, Département Bryophytes et Thallophytes, Domaine de Bouchout, B-1860 Meise, Belgium
Martin IRESTEDT
Affiliation:
Naturhistoriska riksmuseet, Molekylärsystematiska laboratoriet, Box 50007 S-104 05 Stockholm, Sweden

Abstract

Dirina (Roccellaceae, Arthoniales) is a monophyletic genus of crustose, saxicolous or corticolous lichenized fungi. Twenty-four species are accepted in the genus, including nine new species: Dirina angolana, D. arabica, D. astridae, D. canariensis, D. indica, D. madagascariensis, D. pacifica, D. pallescens and D. sorocarpa. A phylogenetic hypothesis is presented based on data from four molecular markers, β-tubulin, ITS 1 and 2, nuLSU and RPB2, including all recognized Dirina species worldwide. New combinations proposed include Dirina badia for Roccellina badia, Dirina jamesii for Roccellina jamesii, Dirina candida for Chiodecton candidum and Dirina teichiodes for Lecidea teichiodes. Two species are reinstated: Dirina approximata and D. monothalamia (as a new name of Chiodecton africanum). Asexual morphs described earlier at the rank forma are no longer recognized as taxonomic units viz., Dirina catalinariae f. sorediata, D. insulana f. sorediata, D. massiliensis f. sorediata, D. paradoxa ssp. paradoxa f. sorediata and D. massiliensis f. aponina. One species, Dirina calcicola, is transferred to Fulvophyton and two other species, Dirina insulae-howensis and Dirina neozelandica, are transferred to Schismatomma. Dirina follmannii is not accepted in Dirina and placed as incertae sedis. A key to the species of Dirina is provided. Vicariance through plate tectonics and continental drift versus long distance dispersal to explain biogeographical patterns is discussed.

Type
Articles
Copyright
Copyright © British Lichen Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973) Information theory as an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Petrov, B. N. & Csaki, F., eds): 267281. Budapest: Akademiai Kiado.Google Scholar
Amo de Paz, G., Cubas, P., Divakar, P. K., Lumbsch, H. T. & Crespo, A. (2011) Origin and diversification of major clades in Parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. Plos One 6: 113.Google Scholar
Amo de Paz, G., Cubas, P., Crespo, A., Elix, J. A. & Lumbsch, H. T. (2012) Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). Plos One 7: 112.Google Scholar
Ayala, F. J. (1999) Molecular clock mirages. BioEssays 21: 7175.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Berbee, M. & Taylor, J. W. (2010) Dating the molecular clock in fungi – how close are we? Fungal Biology Reviews 24: 116.Google Scholar
de Notaris, G. (1846) Frammenti lichenographici. Giornale Botanico iItaliani 2: 174224.Google Scholar
del Prado, R., Divakar, P. K. & Crespo, A. (2011) Using genetic distances in addition to ITS molecular phylogeny to identify potential species in the Parmotrema reticulatum complex: a case study. Lichenologist 43: 569583.Google Scholar
Divakar, P. K., Figueras, G., Hladun, N. L. & Crespo, A. (2010) Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae). Fungal Diversity 42: 4755.Google Scholar
Ertz, D. & Tehler, A. (2011) The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Diversity 49: 4771.Google Scholar
Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D. L. & Kluge, A. G. (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99124.Google Scholar
Goloboff, P. A., Farris, J. S. & Nixon, K. C. (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774786.Google Scholar
Grube, M. & Kroken, S. (2000) Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research 104: 12841294.Google Scholar
Hennig, W. (1966) Phylogenetic Systematics. Chicago: University of Illinois Press.Google Scholar
Holder, M. & Lewis, P. O. (2003) Phylogeny estimation: traditional and Bayesian approaches. Nature Genetics 4: 275284.Google Scholar
Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 23102314.CrossRefGoogle ScholarPubMed
Krempelhuber, A. (1877) Neue Beiträge zu Afrikas Flechten-Flora. Linnaea; Ein Journal für die Botanik in Ihrem Ganzen Umfange, Berlin 41: 135144.Google Scholar
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 29472948.Google Scholar
Leavitt, S. D., Frankhauser, J. D., Leavitt, S. D., Porter, L. D., Johnson, L. A. & St Clair, L. L. (2011) Complex patterns of speciation in cosmopolitan “rock posy” lichens – discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Molecular Phylogenetics and Evolution 59: 587602.Google Scholar
Lücking, R., Huhndorf, S., Pfister, D., Plata, D. H. & Lumbsch, H. T. (2009) Fungi evolved right on track. Mycologia 101: 810822.Google Scholar
Lumbsch, H. T. & Leavitt, D. H. (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity 50: 5972.Google Scholar
Molina, M. C., Divakar, P. K., Millanes, A. M., Sánchez, E., del Prado, R., Hawksworth, D. L. & Crespo, A. (2011) Parmelia sulcata (Ascomycota: Parmeliaceae), a sympatric monophyletic species complex. Lichenologist 43: 585601.Google Scholar
Myllys, L., Tehler, A. & Lohtander, K. (2001) β-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia . Mycologia 93: 335343.Google Scholar
Núñez-Zapata, J., Divakar, P. K., del Prado, R., Cubas, P., Hawksworth, D. L. & Crespo, A. (2011) Conundrums in species concepts: the discovery of a new cryptic species segregated from Parmelina tiliacea (Ascomycota: Parmeliaceae). Lichenologist 43: 603616.Google Scholar
Nylander, J. A. A. (2005) MrModeltest v.2.2. Uppsala: Computer program distributed by the author.Google Scholar
Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. L. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 1: 4767.Google Scholar
Orange, A. (2012) Semi-cryptic marine species of Hydropunctaria (Verrucariaceae, lichenized Ascomycota) from north-west Europe. Lichenologist 44: 299320.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Pino-Bodas, R., Burgas, A. R., Martin, M. P. & Lumbsch, H. T. (2012) Species delimitations in the Cladonia cariosa group (Cladoniaceae, Ascomycota). Lichenologist 44: 121135.Google Scholar
Poelt, J. (1970) Das Konzept der Artenpaare bei den Flechten. Deutsche Botanische Gesellschaft Neue Folge 4: 187198.Google Scholar
Poelt, J. (1972) Die taxonomische Behandlung von Artenpaaren bei den Flechten. Botaniska notiser 125: 7781.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.Google Scholar
Schwartz, J. H. & Maresca, B. (2006) Do molecular clocks run at all? A critique of molecular systematics. Biological Theory 1: 357371.Google Scholar
Swofford, D. L. (1998) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4 . Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibett, D. & Fisher, M. C. (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 2132.Google Scholar
Tehler, A. (1982) The species pair concept in lichenology. Taxon 31: 708714.CrossRefGoogle Scholar
Tehler, A. (1983) The genera Dirina and Roccellina (Roccellaceae). Opera Botanica 70: 186.Google Scholar
Tehler, A. (1985) Roccellina jamesii Tehler sp. nov. and Dirina insulana (C. Tav.) Tehler (Roccellaceae) from the Ascension Island. Bryologist 88: 131134.Google Scholar
Tehler, A. (1986) Dirina paradoxa (Fée) Tehler, the correct name for Dirina approximata Zahlbr. Lichenologist 18: 295296.Google Scholar
Tehler, A. (1988) Dirina massiliensis f. aponina (Massal.) Tehler, a pycnidial anamorph in the lichen genus Dirina (Roccellaceae). Lichenologist 20: 398399.Google Scholar
Tehler, A. (1990) A new approach to the phylogeny of Euascomycetes with a cladistic outline of Arthoniales focussing on Roccellaceae . Canadian Journal of Botany 68: 24582492.Google Scholar
Tehler, A. (2002) Dirina. In Lichen Flora of the Greater Sonoran Desert Region, Vol. I (Nash, T. H. III, Ryan, B. D., Gries, C. & Bungartz, F., eds): 178180. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Tehler, A. (2007) The Roccella lirellina and R. galapagoensis aggregates, taxonomy and nomenclature. Bibliotheca Lichenologica 93: 517530.Google Scholar
Tehler, A. & Irestedt, M. (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Euascomycetes). Cladistics 23: 432454.Google Scholar
Tehler, A., Feige, G. B. & Lumbsch, H. T. (1995) Dirina mexicana, a new species to Mexico. Lichenologist 27: 255259.Google Scholar
Tehler, A., Dahlkild, Å., Eldenäs, P. & Feige, G. B. (2004) The phylogeny and taxonomy of Macaronesian, European and Mediterranean Roccella (Roccellaceae, Arthoniales). Symbolae Botanicae Upsalienses 34: 405428.Google Scholar
Tehler, A., Irestedt, M., Bungartz, F. & Wedin, M. (2009 a) Evolution and reproduction modes in the Roccella galapagoensis aggregate (Roccellaceae, Arthoniales). Taxon 58: 438456.Google Scholar
Tehler, A., Irestedt, M., Wedin, M. & Ertz, D. (2009 b) Origin, evolution and taxonomy of American Roccella (Roccellaceae, Ascomycetes). Systematics and Biodiversity 7: 307317.Google Scholar
Tehler, A., Irestedt, M., Wedin, M. & Ertz, D. (2010) The Old World Roccella species outside Europe and Macaronesia: taxonomy, evolution and phylogeny. Systematics and Biodiversity 8: 223246.Google Scholar
Wedin, M., Döring, H. & Gilenstam, G. (2004) Saprotrophy and lichenization as options for the same fungal species on different substrata: environmental plasticity and fungal lifestyles in the Stictis–Conotrema complex. New Phytologist 164: 459465.Google Scholar
Wedin, M., Westberg, M., Crewe, A. T., Tehler, A. & Purvis, O. W. (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics 25: 161172.Google Scholar
Yang, Z. (2006) Computational Molecular Evolution. New York: Oxford University Press.Google Scholar