Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-24T10:16:33.942Z Has data issue: false hasContentIssue false

Genome-wide assessment of putative endemism and phylogeography of Cladonia sandstedei (Ascomycota: Cladoniaceae) in the Caribbean

Published online by Cambridge University Press:  12 December 2024

Joel A. Mercado-Díaz*
Affiliation:
Collection, Conservation and Research and The Grainger Bioinformatics Center, The Field Museum, Chicago, Illinois 60605, USA Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637, USA
Felix Grewe
Affiliation:
Collection, Conservation and Research and The Grainger Bioinformatics Center, The Field Museum, Chicago, Illinois 60605, USA
Robert Lücking
Affiliation:
Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, 14195 Berlin, Germany
Bibiana Moncada
Affiliation:
Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, 14195 Berlin, Germany Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Torre de Laboratorios, Herbario, Bogotá, Colombia
Yoira Rivera-Queralta
Affiliation:
Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (Bioeco), Esquina Barnada, Santiago de Cuba, Cuba
Ángel Motito-Marín
Affiliation:
Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (Bioeco), Esquina Barnada, Santiago de Cuba, Cuba
H. Thorsten Lumbsch
Affiliation:
Collection, Conservation and Research and The Grainger Bioinformatics Center, The Field Museum, Chicago, Illinois 60605, USA
*
Corresponding author: Joel A. Mercado-Díaz; Email: [email protected]

Abstract

Cladonia sandstedei forms cushion-shaped lichens that colonize open environments and is distributed throughout the Caribbean and the south-eastern United States. It co-occurs in parts of its range with C. subtenuis, a morphologically similar taxon that is distinguished from the former by the presence of usnic acid. Preliminary phylogenetic analysis with the RPB2 and TEF-1α loci revealed that these taxa were closely related, but relationships were inconsistent among markers. Here, we combined phylogenetic and population genomic analyses based on RADseq data to clarify the evolutionary relationships and phylogeography of these taxa. Both approaches indicate that the taxa cannot be separated based on secondary metabolites, as previously proposed, but instead form a complex composed of several lineages, largely unrelated to chemistry but with a strong geographical structure in their genetic variation. Continental populations formerly separated under the names C. sandstedei and C. subtenuis were closely related to each other. A similar pattern was observed in the Jamaican counterparts of these taxa, suggesting homoplasy of secondary chemistry. Discriminant Analysis of Principal Components (DAPC) hinted at potential conspecificity between populations in Cuba and Puerto Rico on one hand, and between Jamaica and the continental US on the other; however, phylogenetic analysis and other population-level analyses (PCA and fineRADstructure) suggested that both insular and continental populations were more likely to be reproductively isolated from each other. Based on this, we propose to recognize only one species for the entire complex, under the older name C. sandstedei, with the four spatially structured clades as subspecies: C. sandstedei subsp. sandstedei (restricted to Jamaica) and C. sandstedei subsp. subtenuis comb. nov. (restricted to continental North America) exhibit several chemosyndromes variably containing usnic acid and/or atranorin. The two additional subspecies described here as new, C. sandstedei subsp. cubana and C. sandstedei subsp. landroniana, exhibit the atranorin chemosyndrome and are restricted to Cuba and Puerto Rico, respectively. Our work reaffirms the power of combining RADseq-based phylogenetics and population genetics to disentangle taxonomic and evolutionary histories in poorly understood, closely related and phenotypically similar lichen-forming fungal species.

Type
Standard Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abbayes, H des (1938) Some Cladoniae (Lichenes) of the British Dominions: S. Africa, Australia, the Antilles; with a dichotomous key to the species of the subgenus Cladina. Journal of Botany 76, 349.Google Scholar
Abbayes, H des (1939) Revision monographique des Cladonia du sous-genre Cladina (Lichens). Bulletin de la Société Scientifique de Bretagne 16, 1156.Google Scholar
Ahti, T (1984) The status of Cladina as a genus segregated from Cladonia. Beihefte zur Nova Hedwigia 79, 2561.Google Scholar
Ahti, T (2000) Cladoniaceae. Flora Neotropica Monograph 78, 1362.Google Scholar
Alonso, R, Crawford, AJ and Bermingham, E (2012) Molecular phylogeny of an endemic radiation of Cuban toads (Bufonidae: Peltophryne) based on mitochondrial and nuclear genes. Journal of Biogeography 39, 434451.CrossRefGoogle Scholar
Alonso-García, M, Grewe, F, Payette, S and Villarreal, JC (2021) Population genomics of a reindeer lichen species from North American lichen woodlands. American Journal of Botany 108, 159171.CrossRefGoogle ScholarPubMed
Alonso-García, M, Pino-Bodas, R and Villarreal, JC (2022) Co-dispersal of symbionts in the lichen Cladonia stellaris inferred from genomic data. Fungal Ecology 60, 101165.CrossRefGoogle Scholar
Andrews, KR, Good, JM, Miller, MR, Luikart, G and Hohenlohe, PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics 17, 8192.CrossRefGoogle ScholarPubMed
Baird, NA, Etter, PD, Atwood, TS, Currey, MC, Shiver, AL, Lewis, ZA, Selker, EU, Cresko, WA and Johnson, EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376.CrossRefGoogle ScholarPubMed
Barcenas-Peña, A, Divakar, PK, Crespo, A, Nuñez-Zapata, J, Lumbsch, HT and Grewe, F (2023) Reference-based Restriction-Site-Associated DNA sequencing data are useful for species delineation in a recently diverged asexually reproducing species complex (Parmeliaceae, Ascomycota). Journal of Fungi 9, 1180.CrossRefGoogle Scholar
Beard, KH and DePriest, PT (1996) Genetic variation within and among mats of the reindeer lichen, Cladina subtenuis. Lichenologist 28, 171181.CrossRefGoogle Scholar
Bertels, F, Silander, OK, Pachkov, M, Rainey, PB and van Nimwegen, E (2014) Automated reconstruction of whole-genome phylogenies from short-sequence reads. Molecular Biology and Evolution 31, 10771088.CrossRefGoogle ScholarPubMed
BirdLife International (2024) Important Bird Area factsheet: Gran Piedra - Pico Mogote. [WWW document] URL https://datazone.birdlife.org/site/factsheet/gran-piedra--pico-mogote-iba-cuba. [Accessed 28 February 2024].Google Scholar
Boenigk, J, Wodniok, S and Glücksman, E (2015) Distribution of present-day biodiversity. In Boenigk, J, Wodniok, S and Glücksman, E (eds), Biodiversity and Earth History. Berlin: Springer, pp. 157225.CrossRefGoogle Scholar
Cowling, RM (2001) Endemism. In Levin S, Asher (ed.), Encyclopedia of Biodiversity. San Diego: Academic Press, pp. 497507.CrossRefGoogle Scholar
Danecek, P, Auton, A, Abecasis, G, Albers, CA, Banks, E, DePristo, MA, Handsaker, RE, Lunter, G, Marth, GT, Sherry, ST, et al. (2011) The variant call format and VCFtools. Bioinformatics 27, 21562158.CrossRefGoogle ScholarPubMed
Eaton, DAR and Overcast, I (2020) ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 25922594.CrossRefGoogle ScholarPubMed
Elshire, RJ, Glaubitz, JC, Sun, Q, Poland, JA, Kawamoto, K, Buckler, ES and Mitchell, SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379.CrossRefGoogle ScholarPubMed
Freeman, BG and Pennell, MW (2021) The latitudinal taxonomy gradient. Trends in Ecology and Evolution 36, 778786.CrossRefGoogle ScholarPubMed
Grewe, F, Huang, JP, Leavitt, SD and Lumbsch, HT (2017) Reference-based RADseq resolves robust relationships among closely related species of lichen-forming fungi using metagenomic DNA. Scientific Reports 7, 111.CrossRefGoogle ScholarPubMed
Grewe, F, Lagostina, E, Wu, H, Printzen, C and Lumbsch, HT (2018) Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species Usnea antarctica and Usnea aurantiacoatra. MycoKeys 43, 91113.CrossRefGoogle Scholar
Hohenlohe, PA, Amish, SJ, Catchen, JM, Allendorf, FW and Luikart, G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Molecular Ecology Resources 11, 117122.CrossRefGoogle ScholarPubMed
Hohenlohe, PA, Day, MD, Amish, SJ, Miller, MR, Kamps-Hughes, N, Boyer, MC, Muhlfeld, CC, Allendorf, FW, Johnson, EA and Luikart, G (2013) Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Molecular Ecology 22, 30023013.CrossRefGoogle ScholarPubMed
Huang, JP, Kraichak, E, Leavitt, SD, Nelsen, MP and Lumbsch, HT (2019) Accelerated diversifications in three diverse families of morphologically complex lichen-forming fungi link to major historical events. Scientific Reports 9, 8518.CrossRefGoogle ScholarPubMed
Jombart, T and Ahmed, I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 30703071.CrossRefGoogle ScholarPubMed
Jombart, T, Balloux, F and Dray, S (2010) adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26, 19071909.CrossRefGoogle ScholarPubMed
Judd, WS (2001) Phylogeny and biogeography of Lyonia sect. Lyonia (Ericaceae). In Woods, CA and Sergile, FE (eds), Biogeography of the West Indies: Patterns and Perspectives. Boca Raton, Florida: CRC Press, pp. 6375.Google Scholar
Kanz, B, Brackel, W von, Cezanne, R, Eichler, M, Hohmann, ML, Teuber, D and Printzen, C (2015) DNA barcodes for the distinction of reindeer lichens: a case study using Cladonia rangiferina and C. stygia. Herzogia 28, 445464.CrossRefGoogle Scholar
Kimura, M (1983) The Neutral Theory of Molecular Evolution. New York: Cambridge University Press.CrossRefGoogle Scholar
Knaus, BJ and Grünwald, NJ (2017) vcfr: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources 17, 4453.CrossRefGoogle ScholarPubMed
Kraichak, E, Divakar, PK, Crespo, A, Leavitt, SD, Nelsen, MP, Lücking, R and Lumbsch, HT (2015) A tale of two hyper-diversities: diversification dynamics of the two largest families of lichenized fungi. Scientific Reports 5, 19.CrossRefGoogle ScholarPubMed
Lawson, DJ, Hellenthal, G, Myers, S and Falush, D (2012) Inference of population structure using dense haplotype data. PLoS Genetics 8, 1002453.CrossRefGoogle ScholarPubMed
Leaché, AD, Banbury, BL, Felsenstein, J, de Oca, ANM and Stamatakis, A (2015) Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Systematic Biology 64, 10321047.CrossRefGoogle ScholarPubMed
Lewis, PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913925.CrossRefGoogle ScholarPubMed
Librado, P and Rozas, J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 14511452.CrossRefGoogle ScholarPubMed
Losos, JB (2009) Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles. Berkeley, California: University of California Press.Google Scholar
Lücking, R, Moncada, B, Sipman, H, Sobreira P, Bezerra, Viñas, C, Gutíerrez, J and Flynn, T (2020) Saxiloba: a new genus of placodioid lichens from the Caribbean and Hawaii shakes up the Porinaceae tree (lichenized Ascomycota: Gyalectales). Plant and Fungal Systematics 65, 577585.CrossRefGoogle Scholar
Lugo, AE, Miranda-Castro, L, Vale, A, López, T del M, Hernandez-Prieto, E, García-Martinó, A, Puente-Rolón, AR, Tossas, AG, McFarlane, DA, Miller, T, et al. (2001) Puerto Rican Karst-A Vital Resource. General Technical Report WO-65. San Juan, Puerto Rico: Forest Service, US Department of Agriculture.CrossRefGoogle Scholar
Lumbsch, HT (2002) Analysis of phenolic products in lichens for identification and taxonomy. In Kranner, I, Beckett, RP and Varma, AK (eds), Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring. Berlin: Springer, pp. 281295.Google Scholar
Malinsky, M, Trucchi, E, Lawson, DJ and Falush, D (2018) RADpainter and fineRADstructure: population inference from RADseq data. Molecular Biology and Evolution 35, 12841290.CrossRefGoogle ScholarPubMed
Matos-Maraví, P, Águila R, Núñez, Peña, C, Miller, JY, Sourakov, A and Wahlberg, N (2014) Causes of endemic radiation in the Caribbean: evidence from the historical biogeography and diversification of the butterfly genus Calisto (Nymphalidae: Satyrinae: Satyrini). BMC Evolutionary Biology 14, 118.CrossRefGoogle ScholarPubMed
Mayr, E (1942) Systematics and the Origin of Species, from the Viewpoint of a Zoologist. New York: Columbia University Press.Google Scholar
Mercado-Díaz, JA, Lücking, R and Parnmen, S (2014) Two new genera and twelve new species of Graphidaceae from Puerto Rico: a case for higher endemism of lichenized fungi in islands of the Caribbean? Phytotaxa 189, 186203.CrossRefGoogle Scholar
Mercado-Díaz, JA, Lücking, R, Moncada, B, Widhelm, TJ and Lumbsch, HT (2020) Elucidating species richness in lichen fungi: the genus Sticta (Ascomycota: Peltigeraceae) in Puerto Rico. Taxon 69, 851891.CrossRefGoogle Scholar
Mercado-Díaz, JA, Lücking, R, Moncada, B, Keron, KC, Delnatte, C, Familia, L, Falcón-Hidalgo, B, Motito-Marín, A, Rivera-Queralta, Y, Widhelm, TJ, et al. (2023) Species assemblages of insular Caribbean Sticta (lichenized Ascomycota: Peltigerales) over ecological and evolutionary time scales. Molecular Phylogenetics and Evolution 186, 107830.CrossRefGoogle ScholarPubMed
Michelangeli, FA, Judd, WS, Penneys, DS, Skean, JD, Bécquer-Granados, ER, Goldenberg, R and Martin, CV (2008) Multiple events of dispersal and radiation of the tribe Miconieae (Melastomataceae) in the Caribbean. Botanical Review 74, 5377.CrossRefGoogle Scholar
Miller, JM, Cullingham, CI and Peery, RM (2020) The influence of a priori grouping on inference of genetic clusters: simulation study and literature review of the DAPC method. Heredity 125, 269280.CrossRefGoogle ScholarPubMed
Moncada, B, Mercado-Díaz, JA and Lücking, R (2018) The identity of Sticta damicornis (Ascomycota: Lobariaceae): a presumably widespread taxon is a Caribbean endemic. Lichenologist 50, 591597.CrossRefGoogle Scholar
Moncada, B, Mercado-Díaz, JA, Magain, N, Hodkinson, BP, Smith, CW, Bungartz, F, Pérez-Pérez, RE, Gumboski, E, Sérusiaux, E, Lumbsch, HT, et al. (2021) Phylogenetic diversity of two geographically overlapping lichens: isolation by distance, environment, or fragmentation? Journal of Biogeography 48, 676689.CrossRefGoogle Scholar
Myllys, L, Stenroos, S, Thell, A and Ahti, T (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Molecular Phylogenetics and Evolution 27, 5869.CrossRefGoogle ScholarPubMed
Narum, SR, Buerkle, CA, Davey, JW, Miller, MR and Hohenlohe, PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Molecular Ecology 22, 28412847.CrossRefGoogle ScholarPubMed
Nieto-Blázquez, ME, Antonelli, A and Roncal, J (2017) Historical biogeography of endemic seed plant genera in the Caribbean: did GAARlandia play a role? Ecology and Evolution 7, 1015810174.CrossRefGoogle ScholarPubMed
Nieto-Blázquez, ME, Peña-Castillo, L and Roncal, J (2020) Historical biogeography of Caribbean Podocarpus does not support the progression rule. Journal of Biogeography 48, 690702.CrossRefGoogle Scholar
Otero, A, Barcenas-Peña, A, Lumbsch, HT and Grewe, F (2023) Reference-based RADseq unravels the evolutionary history of polar species in ‘the Crux Lichenologorum’ genus Usnea (Parmeliaceae, Ascomycota). Journal of Fungi 9, 99.CrossRefGoogle ScholarPubMed
Pino-Bodas, R, Burgaz, AR, Martín, MP and Lumbsch, HT (2011) Phenotypical plasticity and homoplasy complicate species delimitation in the Cladonia gracilis group (Cladoniaceae, Ascomycota). Organisms Diversity and Evolution 11, 343355.CrossRefGoogle Scholar
Pino-Bodas, R, Ahti, T, Stenroos, S, Martín, MP and Burgaz, AR (2012 a) Cladonia conista and C. humilis (Cladoniaceae) are different species. Bibliotheca Lichenologica 108, 161176.Google Scholar
Pino-Bodas, R, Martín, MP and Burgaz, AR (2012 b) Cladonia subturgida and C. iberica (Cladoniaceae) form a single, morphologically and chemically polymorphic species. Mycological Progress 11, 269278.CrossRefGoogle Scholar
Pino-Bodas, R, Martín, MP, Burgaz, AR and Lumbsch, HT (2013) Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Molecular Ecology Resources 13, 10581068.CrossRefGoogle Scholar
Printzen, C and Ekman, S (2003) Local population subdivision in the lichen Cladonia subcervicornis as revealed by mitochondrial cytochrome oxidase subunit 1 intron sequences. Mycologia 95, 399406.CrossRefGoogle ScholarPubMed
Puechmaille, SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources 16, 608627.CrossRefGoogle Scholar
Rambaut, A (2012) FigTree v. 1.4.0. [WWW resource] URL http://tree.bio.ed.ac.uk/software/figtree/Google Scholar
Reynolds, RG, Niemiller, ML, Hedges, SB, Dornburg, A, Puente-Rolón, AR and Revell, LJ (2013) Molecular phylogeny and historical biogeography of West Indian boid snakes (Chilabothrus). Molecular Phylogenetics and Evolution 68, 461470.CrossRefGoogle ScholarPubMed
Ricart-Pujals, JLR and Padrón-Vélez, R (2010) Sinópsis anotada y comentada de la flora del Bosque Estatal de Maricao. San Juan, Puerto Rico: Forest Service, US Department of Agriculture.Google Scholar
Rochette, NC, Rivera-Colón, AG and Catchen, JM (2019) Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology 28, 47374754.CrossRefGoogle ScholarPubMed
Rodríguez, A, Vences, M, Nevado, B, Machordom, A and Verheyen, E (2010) Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 54, 179186.CrossRefGoogle ScholarPubMed
Rosentreter, R, DeBolt, AM and Kaminsky, L (2015) Field Oriented Keys to the Florida Lichens. Boise: Florida Museum.Google Scholar
Shringarpure, S and Xing, EP (2014) Effects of sample selection bias on the accuracy of population structure and ancestry inference. G3: Genes, Genomes, Genetics 4, 901911.CrossRefGoogle ScholarPubMed
Stamatakis, A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.CrossRefGoogle ScholarPubMed
Stenroos, S, Hyvönen, J, Myllys, L, Thell, A and Ahti, T (2002) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18, 237278.CrossRefGoogle ScholarPubMed
Stenroos, S, Pino-Bodas, R, Hyvönen, J, Lumbsch, HT and Ahti, T (2019) Phylogeny of the family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics 35, 351384.CrossRefGoogle ScholarPubMed
Wagner, CE, Keller, I, Wittwer, S, Selz, OM, Mwaiko, S, Greuter, L, Sivasundar, A and Seehausen, O (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology 22, 787798.CrossRefGoogle Scholar
Wang, J (2017) The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Molecular Ecology Resources 17, 981990.CrossRefGoogle ScholarPubMed
Widhelm, TJ, Grewe, F, Huang, JP, Ramanauskas, K, Mason-Gamer, R and Lumbsch, HT (2021) Using RADseq to understand the circum-Antarctic distribution of a lichenized fungus, Pseudocyphellaria glabra. Journal of Biogeography 48, 7890.CrossRefGoogle Scholar
Widhelm, TJ, Rao, A, Grewe, F and Lumbsch, HT (2023) High-throughput sequencing confirms the boundary between traditionally considered species pairs in a group of lichenized fungi (Peltigeraceae, Pseudocyphellaria). Botanical Journal of the Linnean Society 201, 471482.CrossRefGoogle Scholar
Yahr, R, Vilgalys, R and DePriest, PT (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171, 847860.CrossRefGoogle ScholarPubMed
Yu, G (2020) Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics 69, e96.CrossRefGoogle ScholarPubMed
Supplementary material: File

Mercado-Díaz et al. supplementary material 1

Mercado-Díaz et al. supplementary material
Download Mercado-Díaz et al. supplementary material 1(File)
File 30.8 KB
Supplementary material: File

Mercado-Díaz et al. supplementary material 2

Mercado-Díaz et al. supplementary material
Download Mercado-Díaz et al. supplementary material 2(File)
File 15.7 KB
Supplementary material: File

Mercado-Díaz et al. supplementary material 3

Mercado-Díaz et al. supplementary material
Download Mercado-Díaz et al. supplementary material 3(File)
File 34.9 KB
Supplementary material: File

Mercado-Díaz et al. supplementary material 4

Mercado-Díaz et al. supplementary material
Download Mercado-Díaz et al. supplementary material 4(File)
File 309 KB
Supplementary material: File

Mercado-Díaz et al. supplementary material 5

Mercado-Díaz et al. supplementary material
Download Mercado-Díaz et al. supplementary material 5(File)
File 368.5 KB
Supplementary material: File

Mercado-Díaz et al. supplementary material 6

Mercado-Díaz et al. supplementary material
Download Mercado-Díaz et al. supplementary material 6(File)
File 132.6 KB