Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T22:25:51.446Z Has data issue: false hasContentIssue false

Fuscidea lightfootii and F. pusilla (Fuscideaceae, Umbilicariomycetidae, Ascomycota), two similar but genetically distinct species.

Published online by Cambridge University Press:  23 July 2018

Martina ZAHRADNíKOVá*
Affiliation:
Department of Natural History, University Museum, University of Bergen, Allégaten 41, N-5020 Bergen, Norway.
Heidi Lie ANDERSEN
Affiliation:
The Arboretum and Botanical Gardens, Department of Natural History, University Museum, University of Bergen, Allégaten 41, N-5020 Bergen, Norway
Tor TøNSBERG*
Affiliation:
Department of Natural History, University Museum, University of Bergen, Allégaten 41, N-5020 Bergen, Norway.
*
(co-corresponding authors): Email: [email protected]
(co-corresponding authors): [email protected]

Abstract

The two corticolous species Fuscidea lightfootii (Sm.) Coppins & P. James and F. pusilla Tønsberg are morphologically and chemically similar and it has been suggested that they are conspecific. We investigated the interspecific relationship between F. lightfootii and F. pusilla using ITS, LSU and mtSSU rDNA. The combined multigene phylogeny shows that these species are genetically distinct. They are similar in ascocarp anatomy but in thallus morphology and substratum preferences there may be slight differences between them. Moreover, F. pusilla displays a broader ecological range than F. lightfootii. Even though some morphotypes appeared distinct and may be assigned to one of the two species with some degree of certainty, the use of DNA sequencing is recommended for their identification. Epitypes are designated for both species.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aptroot, A. (2002) New and interesting lichens and lichenicolous fungi in Brazil. Fungal Diversity 9: 1545.Google Scholar
Bendiksby, M. & Timdal, E. (2013) Molecular phylogenetics and taxonomy of Hypocenomyce sensu lato (Ascomycota: Lecanoromycetes): extreme polyphyly and morphological/ecological convergence. Taxon 62: 940956.CrossRefGoogle Scholar
Bendiksby, M., Haugan, R., Spribille, T. & Timdal, E. (2015) Molecular phylogenetics and taxonomy of the Calvitimela aglaea complex (Tephromelataceae, Lecanorales). Mycologia 107: 11721183.CrossRefGoogle ScholarPubMed
Bylin, A., Arnerup, J., Högberg, N. & Thor, G. (2007) A phylogenetic study of Fuscideaceae using mtSSU rDNA. Bibliotheca Lichenologica 96: 4960.Google Scholar
Coppins, B. J. & James, P. W. (1978) New or interesting British Lichens II. Lichenologist 10: 179207.CrossRefGoogle Scholar
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66S1: 7181.CrossRefGoogle Scholar
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.CrossRefGoogle ScholarPubMed
Culberson, C. F. & Kristinsson, H.-D. (1970) A standardized method for the identification of lichen products. Journal of Chromatography 46: 8593.CrossRefGoogle Scholar
Döring, H., Clerc, P., Grube, M. & Wedin, M. (2000) Mycobiont-specific PCR primers for the amplification of nuclear ITS and LSU rDNA from lichenized ascomycetes. Lichenologist 32: 200204.CrossRefGoogle Scholar
Edgar, R. C. (2004 a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.CrossRefGoogle ScholarPubMed
Edgar, R. C. (2004 b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 17921797.CrossRefGoogle ScholarPubMed
Friedl, T. & Büdel, B. (2008) Photobionts. In Lichen Biology, 2nd Edition (T. H. Nash III, ed.):926. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fryday, A. M. (2008) The genus Fuscidea (Fuscideaceae, lichenized Ascomycota) in North America. Lichenologist 40: 295328.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Gilbert, O. L., Purvis, O. W., Skjolddal, L. H. & Tønsberg, T. (2009) Fuscidea V. Wirth & Vězda (1972). In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds.):407411. London: British Lichen Society.Google Scholar
Huelsenbeck, J. P. & Crandall, K. A. (1997) Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology and Systematics 28: 437466.CrossRefGoogle Scholar
Kalb, K. & Hafellner, J. (1992) Bemerkenswerte Flechten und lichenicole Pilze von der Insel Madeira. Herzogia 9: 45102.CrossRefGoogle Scholar
Kantvilas, G. (2001) The lichen family Fuscideaceae in Tasmania. Bibliotheca Lichenologica 78: 169192.Google Scholar
Kantvilas, G. (2004) Fuscidea . In Flora of Australia, Volume 56A, Lichens 4 (P. N. McCarthy & K. Mallet, eds):174182. Melbourne: ABRS & CSIRO Publishing.Google Scholar
Lendemer, J. C. (2011) A review of the morphologically similar species Fuscidea pusilla and Ropalospora viridis in eastern North America. Opuscula Philolichenum 9: 1120.Google Scholar
McNeill, J., Barrie, F. R., Buck, W. R., Demoulin, V., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Marhold, K., Prado, J. et al. (2012) International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code) (Regnum Vegetabile 154). Königstein: Koeltz Scientific Books.Google Scholar
Menlove, J. E. (1974) Thin-layer chromatography for the identification of lichen substances. British Lichen Society Bulletin 34: 35.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Resl, P., Mayrhofer, H., Clayden, S. R., Spribille, T., Thor, G., Tønsberg, T. & Sheard, J. W. (2016) Morphological, chemical and species delimitation analyses provide new taxonomic insights into two groups of Rinodina . Lichenologist 48: 469488.CrossRefGoogle ScholarPubMed
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Smith, J. E. & Sowerby, J. (1805) English Botany; or, Coloured Figures of British Plants, With Their Essential Characters, Synonyms, and Places of Growth. To Which Will Be Added, Occasional Remarks Vol. 21. London: Published by the authors.Google Scholar
Spribille, T., Klug, B. & Mayrhofer, H. (2011) A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles. Molecular Phylogenetics and Evolution 59: 603614.CrossRefGoogle ScholarPubMed
Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.CrossRefGoogle ScholarPubMed
Tønsberg, T. (1992) The sorediate and isidiate, corticolous crustose lichens in Norway. Sommerfeltia 14: 1131.CrossRefGoogle Scholar
Tønsberg, T. (1993) Additions to the lichen flora of North America II. Bryologist 96: 629630.CrossRefGoogle Scholar
Tønsberg, T. (2002) Additions to the lichen flora of North America XI. Bryologist 105: 122125.CrossRefGoogle Scholar
Tønsberg, T. & Johnsen, J. (2008) Fuscidea lightfootii new to Fennoscandia. Graphis Scripta 20: 3132.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds):315322. San Diego: Academic Press.Google Scholar
Wirth, V. & Vězda, A. (1972) Zur Systematik der Lecidea cyathoides-Gruppe. Beiträge zur Naturkundlichen Forschung in Südwestdeutschland 31: 9192.Google Scholar
Zahradníková, M., Andersen, H. L., Tønsberg, T. & Beck, A. (2017) Molecular evidence of Apatococcus, including A. fuscideae sp. nov., as photobiont in the genus Fuscidea . Protist 168: 425438.CrossRefGoogle Scholar
Zhang, J., Mamlouk, A. M., Martinetz, T., Chang, S., Wang, J. & Hilgenfeld, R. (2011) PhyloMap: an algorithm for visualizing relationships of large sequence data sets and its application to the influenza A virus genome. BMC Bioinformatics 12: 248.CrossRefGoogle Scholar
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 28692876.CrossRefGoogle ScholarPubMed
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar
Supplementary material: File

Zahradníková et al. supplementary material

Appendix A

Download Zahradníková et al. supplementary material(File)
File 20.4 KB