Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T15:37:29.741Z Has data issue: false hasContentIssue false

Eutrophication threatens the biochemical diversity in lichens

Published online by Cambridge University Press:  01 February 2011

Markus HAUCK
Affiliation:
Department of Plant Ecology, Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany. Email: [email protected]

Abstract

Lichens respond sensitively to ambient nitrogen levels. Global change, which includes the increase of nitrogen-polluted environments, causes the decline of species sensitive to eutrophication, whereas some species tolerant of high nitrogen levels increase. Lichens produce hundreds of carbon-based secondary substances (so-called lichen substances), most of which are unique to the lichen symbiosis. In the present paper, correlative patterns between the eutrophication tolerance of lichen species and their secondary chemistry are analyzed using two data sets, one classifying the eutrophication tolerance of more than 500 Central European lichen species, and another of epiphytic lichens from more than 1200 plots from the Netherlands. Analyses show that, in general, the diversity of lichen secondary metabolites decreases along with increasing tolerance to eutrophication. Most notable is the reduced diversity of depsides and depsidones, the two largest groups of lichen substances, but dibenzofurans and fatty acids are also generally found in lichens sensitive to eutrophication. Conversely, anthraquinones and pulvinic acids are found most frequently in lichens from nitrogen-rich environments that can result from eutrophication. A family-wide analysis of the datasets indicates that loss of chemical diversity is not due to a single species-rich lichen family, but a characteristic of many lichen families.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Culberson, C. F. (1969) Chemical and Botanical Guide to Lichen Products. Chapel Hill: University of North Carolina Press.Google Scholar
Ellenberg, H. (1974) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scripta Geobotanica 9: 197.Google Scholar
Ellenberg, H. (1992) Zeigerwerte der Gefäßpflanzen Mitteleuropas (ohne Rubus). Scripta Geobotanica 18: 9166.Google Scholar
Hauck, M. (2008) Metal homeostasis in Hypogymnia physodes is controlled by lichen substances. Environmental Pollution 153: 304308.CrossRefGoogle ScholarPubMed
Hauck, M. (2010) Ammonium and nitrate tolerance in lichens. Environmental Pollution 158: 11271133.CrossRefGoogle ScholarPubMed
Hauck, M. & Jürgens, S.-R. (2008) Usnic acid controls the acidity tolerance of lichens. Environmental Pollution 156: 115122.CrossRefGoogle ScholarPubMed
Hauck, M. & Wirth, V. (2010) Preference of lichens for shady habitats is correlated with intolerance to high nitrogen levels. Lichenologist 42: 475484.CrossRefGoogle Scholar
Hauck, M., Jürgens, S.-R., Huneck, S. & Leuschner, C. (2009 a) High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances. Environmental Pollution 157: 27762780.CrossRefGoogle ScholarPubMed
Hauck, M., Jürgens, S.-R., Willenbruch, K., Huneck, S. & Leuschner, C. (2009 b) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Annals of Botany 103: 1322.CrossRefGoogle ScholarPubMed
Hauck, M., Willenbruch, K. & Leuschner, C. (2009 c) Lichen substances prevent lichens from nutrient deficiency. Journal of Chemical Ecology 35: 7173.CrossRefGoogle ScholarPubMed
Hauck, M., Jürgens, S.-R. & Leuschner, C. (2010 a) Norstictic acid: correlations between its physico-chemical characteristics and ecological preferences of lichens producing this depsidone. Environmental and Experimental Botany 68: 309313.CrossRefGoogle Scholar
Hauck, M., Jürgens, S.-R. & Leuschner, C. (2010 b) Effect of amino acid moieties on metal binding in pulvinic acid derivatives and ecological implications for lichens producing these compounds. Bryologist 113: 17.CrossRefGoogle Scholar
Huneck, S. (2001) New Results on the Chemistry of Lichen Substances. Wien: Springer.CrossRefGoogle ScholarPubMed
Huneck, S. & Yoshimura, I. (1996) Identification of Lichen Substances. Berlin: Springer.CrossRefGoogle Scholar
Krupa, S. V. (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution 124: 179221.CrossRefGoogle ScholarPubMed
Lakatos, M., Rascher, U. & Büdel, B. (2006) Functional characteristics of corticolous lichens in the understorey of a tropical lowland rain forest. New Phytologist 172: 679695.CrossRefGoogle Scholar
Leuckert, C. (1985) Probleme der Flechten-Chemotaxonomie. Stoffkombinationen und ihre taxonomische Wertung. Berichte der Deutschen Botanischen Gesellschaft 98: 401408.CrossRefGoogle Scholar
Lumbsch, H. T. & Huhndorf, S. M. (2007) Outline of Ascomycota. Myconet 13: 158.Google Scholar
Munzi, S., Pirintsos, S. A. & Loppi, S. (2009 a) Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicology and Environmental Safety 72: 281285.CrossRefGoogle ScholarPubMed
Munzi, S., Pisani, T. & Loppi, S. (2009 b) The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicology and Environmental Safety 72: 20092012.CrossRefGoogle ScholarPubMed
Nash, T. H. (2008) Nitrogen, its metabolism and potential contribution to ecosystems. In Lichen Biology (Nash, T. H., ed.): 216233. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Neuhäuser, B., Dynowksi, M., Mayer, M. & Ludewig, U. (2007) Regulation of NH4+ transport by essential cross talk between AMT monomers through the carboxyl tails. Plant Physiology 143: 16511659.CrossRefGoogle ScholarPubMed
Olivier, J. G. J., Bouwman, A. F., van der Hook, K. W. & Berdowski, J. J. M. (1998) Global air emission inventories for anthropogenic sources of NOX, NH3 and N2O in 1990. Environmental Pollution 102 (S1): 135148.CrossRefGoogle Scholar
Pirintsos, S. A., Munzi, S., Loppi, S. & Kotzabasis, K. (2009) Do polyamines alter the sensitivity of lichens to nitrogen stress? Ecotoxicology and Environmental Safety 72: 13311336.CrossRefGoogle ScholarPubMed
Riddell, J., Nash, T. H. & Padgett, P. (2008) The effect of HNO3 gas on the lichen Ramalina menziesii. Flora 203: 4754.CrossRefGoogle Scholar
Schmull, M., Hauck, M., Vann, D. R., Johnson, A. H. & Runge, M. (2002) Site factors determining epiphytic lichen distribution in a dieback-affected spruce-fir forest on Whiteface Mountain, New York: stemflow chemistry. Canadian Journal of Botany 80: 11311140.CrossRefGoogle Scholar
Schortemeyer, M., Stamp, P. & Feil, B. (1997) Ammonium tolerance and carbohydrate status in maize cultivars. Annals of Botany 79: 2530.CrossRefGoogle Scholar
Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolseley, P. A. (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Søchting, U. (1997) Two major anthraquinone chemosyndromes in Teloschistaceae. Bibliotheca Lichenologica 68: 135144.Google Scholar
Sparrius, L. B. (2007) Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of the Netherlands. Environmental Pollution 146: 375379.CrossRefGoogle Scholar
Takani, M., Yajima, T., Masuda, H. & Yamauchi, O. (2002) Spectroscopic and structural characterization of copper(II) and palladium(II) complexes of a lichen substance usnic acid and its derivatives. Possible forms of environmental metals retained in lichens. Journal of Inorganic Biochemistry 91: 139150.CrossRefGoogle ScholarPubMed
van Dobben, H. F. & de Bakker, A. J. (1996) Re-mapping epiphytic lichen biodiversity in the Netherlands: effects of decreasing SO2 and increasing NH3. Acta Botanica Neerlandica 45: 5571.CrossRefGoogle Scholar
van Dobben, H. F. & ter Braak, C. J. F. (1998) Effects of atmospheric NH3 on epiphytic lichens in the the Netherlands: the pitfalls of biological monitoring. Atmospheric Environment 32: 551557.CrossRefGoogle Scholar
van Dobben, H. F. & ter Braak, C. J. F. (1999) Ranking of epiphytic lichen sensitivity to air pollution using survey data: a comparison of indicator scales. Lichenologist 31: 2739.CrossRefGoogle Scholar
van Herk, C. M. (1999) Mapping ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 920.CrossRefGoogle Scholar
Webb, J., Menzi, H., Pain, B. F., Misselbrook, T. H., Dämmgen, U., Hendriks, H. & Döhler, H. (2005) Managing ammonia emissions from livestock production in Europe. Environmental Pollution 135: 399406.CrossRefGoogle ScholarPubMed
Weber, B., Scherr, C., Reichenberger, H. & Büdel, B. (2007) Fast reactivation by high air humidity and photosynthetic performance of alpine lichens growing endolithically in limestone. Arctic, Antarctic, and Alpine Research 39: 309317.CrossRefGoogle Scholar
Wirth, V. (1995) Die Flechten Baden-Württembergs. Stuttgart: Ulmer.Google Scholar
Wirth, V. (2010) Ökologische Zeigerwerte von Flechten – erweiterte und aktualisierte Fassung. Herzogia 23 (in press).CrossRefGoogle Scholar