Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T02:07:08.705Z Has data issue: false hasContentIssue false

Estimating the timescale of Lobaria diversification

Published online by Cambridge University Press:  26 January 2018

Carolina CORNEJO
Affiliation:
Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. Email: [email protected]
Christoph SCHEIDEGGER
Affiliation:
Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. Email: [email protected]

Abstract

Using an ITS mutation rate as calibration reference, a three-locus timetree was generated for the genus Lobaria and its most important clades. The timetree resolved most clades with strong support and gave an estimate of the diversification time for Lobaria during the early Oligocene. A fossil impression from a 12–24 million-year-old Miocene deposit is hypothesized here to belong to an ancestral Lobaria species. Additionally, the age estimate indicates that the paleoclimate and the closing or opening of the Bering Strait played a major role in shaping the current distribution of most Lobaria species. It is hypothesized that the Bering land bridge acted as a major highway during warm-temperate climate periods, but as a barrier during Arctic climate times.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amo de Paz, G., Cubas, P., Divakar, P. K., Lumbsch, H. T. & Crespo, A. (2011) Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Paleogene inferred by Bayesian analysis. PLoS ONE 6: e28161.Google ScholarPubMed
Ayala, F. J. (1997) Molecular clock mirages. Primates 8: 9.Google Scholar
Beimforde, C., Feldberg, K., Nylinder, S., Rikkinen, J., Tuovila, H., Dörfelt, H., Grube, M., Jackson, D. J., Reitner, J. & Seyfullah, L. J. (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Molecular Phylogenetics and Evolution 78: 386398.CrossRefGoogle ScholarPubMed
Bouillé, M., Senneville, S. & Bousquet, J. (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea . Tree Genetics and Genomes 7: 469484.CrossRefGoogle Scholar
Cornejo, C. & Scheidegger, C. (2015) Multi-gene phylogeny of the genus Lobaria: evidence of species-pair and allopatric cryptic speciation in East Asia. American Journal of Botany 102: 20582073.CrossRefGoogle ScholarPubMed
Cummings, M. P. & Meyer, A. (2005) Magic bullets and golden rules: data sampling in molecular phylogenetics. Zoology 108: 329336.CrossRefGoogle ScholarPubMed
Divakar, P. K., Del-Prado, R., Lumbsch, H. T., Wedin, M., Esslinger, T. L., Leavitt, S. D. & Crespo, A. (2012) Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. American Journal of Botany 99: 20142026.CrossRefGoogle ScholarPubMed
dos Reis, M. & Yang, Z. (2013) The unbearable uncertainty of Bayesian divergence time estimation. Journal of Systematics and Evolution 51: 3043.CrossRefGoogle Scholar
Drummond, A. J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.CrossRefGoogle ScholarPubMed
Drummond, A. J., Ho, S. Y., Rawlence, N. & Rambaut, A. (2007) A rough guide to BEAST 1.4. Available at: http://beast.community.Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 19691973.CrossRefGoogle ScholarPubMed
Gladenkov, A. Y., Oleinik, A. E., Marincovich, L. & Barinov, K. B. (2002) A refined age for the earliest opening of Bering Strait. Palaeogeography, Palaeoclimatology, Palaeoecology 183: 321328.CrossRefGoogle Scholar
Honegger, R., Edwards, D. & Axe, L. (2013) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytologist 197: 264275.CrossRefGoogle ScholarPubMed
Kaasalainen, U., Heinrichs, J., Krings, M., Myllys, L., Grabenhorst, H., Rikkinen, J. & Schmidt, A. (2015) Alectorioid morphologies in Paleogene lichens: new evidence and re-evaluation of the fossil Alectoria succini Mägdefrau. PLoS ONE 10: e0129526.CrossRefGoogle ScholarPubMed
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012 a) Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen‐forming fungi (Ascomycota: Parmeliaceae). Biological Journal of the Linnean Society 107: 920937.Google Scholar
Leavitt, S. D., Esslinger, T. L., Divakar, P. K. & Lumbsch, H. T. (2012 b) Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evolutionary Biology 12: 176.CrossRefGoogle ScholarPubMed
Leavitt, S. D., Esslinger, T. L. & Lumbsch, H. T. (2012 c) Neogene-dominated diversification in neotropical montane lichens: dating divergence events in the lichen-forming fungal genus Oropogon (Parmeliaceae). American Journal of Botany 99: 17641777.CrossRefGoogle ScholarPubMed
Leavitt, S. D., Fernández‐Mendoza, F., Pérez‐Ortega, S., Sohrabi, M., Divakar, P. K., Vondrák, J., Lumbsch, H. T. & St. Clair, L. L. (2013 a) Local representation of global diversity in a cosmopolitan lichen‐forming fungal species complex (Rhizoplaca, Ascomycota). Journal of Biogeography 40: 17921806.CrossRefGoogle Scholar
Leavitt, S. D., Lumbsch, H. T., Stenroos, S. & St. Clair, L. L. (2013 b) Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 8: e85240.CrossRefGoogle ScholarPubMed
Leavitt, S. D., Kraichak, E., Vondrak, J., Nelsen, M. P., Sohrabi, M., Perez-Ortega, S., St. Clair, L. L. & Lumbsch, H. T. (2016) Cryptic diversity and symbiont interactions in rock-posy lichens. Molecular Phylogenetics and Evolution 99: 261274.CrossRefGoogle ScholarPubMed
Lockwood, J. D., Aleksić, J. M., Zou, J., Wang, J., Liu, J. & Renner, S. S. (2013) A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molecular Phylogenetics and Evolution 69: 717727.CrossRefGoogle ScholarPubMed
Lücking, R., Huhndorf, S., Pfister, D. H., Plata, E. R. & Lumbsch, H. T. (2009) Fungi evolved right on track. Mycologia 101: 810822.CrossRefGoogle ScholarPubMed
MacGinitie, H. D. (1937) The flora of the Weaverville beds of Trinity County, California. Carnegie Institution of Washington Publication 465: 83151.Google Scholar
Marincovich, L. & Gladenkov, A. Y. (1999) Evidence for an early opening of the Bering Strait. Nature 397: 149151.CrossRefGoogle Scholar
Moncada, B., Lücking, R. & Betancourt-Macuase, L. (2013) Phylogeny of the Lobariaceae (lichenized Ascomycota: Peltigerales), with a reappraisal of the genus Lobariella . Lichenologist 45: 203263.CrossRefGoogle Scholar
Peterson, E. B. (2000) An overlooked fossil lichen (Lobariaceae). Lichenologist 32: 298300.CrossRefGoogle Scholar
Poinar, G., Peterson, E. & Platt, J. (2000) Fossil Parmelia in new world amber. Lichenologist 32: 263269.CrossRefGoogle Scholar
Prieto, M. & Wedin, M. (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8: e65576.CrossRefGoogle ScholarPubMed
Prieto, M. & Wedin, M. (2016) Phylogeny, taxonomy and diversification events in the Caliciaceae . Fungal Diversity 82: 221238.Google Scholar
Rambaut, A. (2009) FigTree v1.3.1. Tree figure drawing tool. Available at: http://tree.bio.ed.ac.uk/ Google Scholar
Rambaut, A., Suchard, M., Xie, D. & Drummond, A. (2014) Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer Google Scholar
Ran, J.-H., Wei, X.-X. & Wang, X.-Q. (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Molecular Phylogenetics and Evolution 41: 405419.CrossRefGoogle ScholarPubMed
Rikkinen, J. (2003) Calicioid lichens from European Tertiary amber. Mycologia 95: 10321036.CrossRefGoogle ScholarPubMed
Rikkinen, J. & Poinar, G. O. (2002) Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycological Research 106: 984990.CrossRefGoogle Scholar
Rikkinen, J. & Poinar, G. O. (2008) A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. Journal of Experimental Botany 59: 10071011.CrossRefGoogle ScholarPubMed
Scheidegger, C. (1995) Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population. Lichenologist 27: 361374.CrossRefGoogle Scholar
Schenk, J. J. (2016) Consequences of secondary calibrations on divergence time estimates. PLoS ONE 11: e0148228.CrossRefGoogle ScholarPubMed
Škaloud, P., Friedl, T., Hallmann, C., Beck, A. & Dal Grande, F. (2016) Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). Journal of Phycology 52: 599617.CrossRefGoogle Scholar
Takahata, N. (2007) Molecular clock: an anti-neo-Darwinian legacy. Genetics 176: 16.CrossRefGoogle ScholarPubMed
Wang, Q. & Mao, K. S. (2016) Puzzling rocks and complicated clocks: how to optimize molecular dating approaches in historical phytogeography. New Phytologist 209: 13531358.CrossRefGoogle ScholarPubMed
Wen, J., Zhang, J., Nie, Z.-L., Zhong, Y. & Sun, H. (2014) Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Frontiers in Genetics 5: 4.CrossRefGoogle ScholarPubMed
Wen, J., Nie, Z.-L. & Ickert-Bond, S. M. (2016) Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene. Journal of Systematics and Evolution 54: 469490.CrossRefGoogle Scholar
Wilke, T., Schultheiß, R. & Albrecht, C. (2009) As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27: 2545.CrossRefGoogle Scholar
Yoshimura, I. (1971) The genus Lobaria of Eastern Asia. Journal of the Hattori Botanical Laboratory 34: 231264.Google Scholar
Supplementary material: PDF

Cornejo and Scheidegger supplementary material

Figure S1

Download Cornejo and Scheidegger supplementary material(PDF)
PDF 108.9 KB