Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T12:06:46.590Z Has data issue: false hasContentIssue false

Epiphloea belongs to Collemataceae (Lecanoromycetes, lichenized Ascomycota)

Published online by Cambridge University Press:  02 November 2015

Matthias Schultz
Affiliation:
Herbarium Hamburgense, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststraße 18, D-22609 Hamburg, Germany. Email: [email protected]
Mats Wedin
Affiliation:
Swedish Museum of Natural History, Department of Botany, P.O. Box 50007, SE-10405 Stockholm, Sweden
Henrike Diel
Affiliation:
University Medical Center Hamburg-Eppendorf, Campus Forschung (N27), Martinistraße 52, D-20246 Hamburg, Germany
Maria Prieto
Affiliation:
Swedish Museum of Natural History, Department of Botany, P.O. Box 50007, SE-10405 Stockholm, Sweden

Abstract

The cyanolichen genus Epiphloea is currently included within the Heppiaceae (Lichinomycetes) based on ascus characteristics. The presumed presence of a prototunicate ascus has been used as support for this classification, despite the incongruence with other characters (e.g. spores). Here, we use a molecular phylogeny of the two markers mtSSU rDNA and Mcm7 to investigate the position of Epiphloea. In addition, we have re-investigated the ascus characteristics. Our results place the two species, Epiphloea byssina and E. terrena, within the Collemataceae, nested in Leptogium s. str. The ascus type in both species is shown to be Lecanoralean and similar to the ascus in other Collemataceae, with a strongly amyloid tube-like structure. This observation supports the placement within Lecanoromycetes and refutes the earlier suggested affinities with Heppiaceae and Lichinomycetes. The correct names for these species are Leptogium byssinum and Leptogium terrenum.

Type
Articles
Copyright
© British Lichen Society, 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ekman, S., Wedin, M., Lindblom, L. & Jørgensen, P. M. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). Lichenologist 46: 627656.Google Scholar
Eriksson, O. E. (1999) Outline of Ascomycota – 1999. Myconet 3: 188.Google Scholar
Jørgensen, P. M. (1994) Further notes on European taxa of the lichen genus Leptogium, with emphasis on the small species. Lichenologist 26: 129.Google Scholar
Jørgensen, P. M. (2007) Heppiaceae. In Nordic Lichen Flora. Volume 3. Cyanolichens (T. Ahti, P. M. Jørgensen, H. Kristinsson, R. Moberg, U. Søchting & G. Thor, eds): 43–45. Uppsala: Nordic Lichen Society.Google Scholar
Jørgensen, P. M., Otálora, M. A. G. & Wedin, M. (2013) Proposal to conserve the name Leptogium (lichenized Ascomycota) with a conserved type. Taxon 62: 13331334.Google Scholar
Lumbsch, H. T. & Huhndorf, S. M. (eds) (2007) Outline of Ascomycota – 2007. Myconet 13: 158.Google Scholar
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628651.Google Scholar
Maddison, W. P. & Maddison, D. R. (2001) MacClade: Analysis of Phylogeny and Character Evolution. Version 4.01. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Magain, N. & Sérusiaux, E. (2014) Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS ONE 9: e89876. doi:10.1371/journal.pone.0089876 CrossRefGoogle ScholarPubMed
Miądlikowska, J., Richardson, D., Magain, N., Ball, B., Anderson, F., Cameron, R., Lendemer, J., Truong, C. & Lutzoni, F. (2014) Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes). American Journal of Botany 101: 11411156.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.Google Scholar
Otálora, M. A. G. & Wedin, M. (2013) Collema fasciculare belongs in Arctomiaceae . Lichenologist 45: 295304.Google Scholar
Otálora, M. A. G., Aragón, G., Martínez, I. & Wedin, M. (2013) Cardinal characters on a slippery slope – a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). Molecular Phylogenetics and Evolution 68: 185198.Google Scholar
Otálora, M. A. G., Jørgensen, P. M. & Wedin, M. (2014) A revised generic classification of the jelly lichens. Collemataceae. Fungal Diversity 64: 275293.Google Scholar
Posada, D. (2008) JModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Prieto, M., Baloch, E., Tehler, A. & Wedin, M. (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of unclear relationship. Cladistics 29: 296308.Google Scholar
Rambaut, A. & Drummond, A. J. (2007) Tracer v.1.4. http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Rodríguez, F., Oliver, J. F., Marin, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Schmitt, I., Crespo, A., Divakar, P. K., Frankhauser, J. D., Herman-Sackett, E., Kalb, K., Nelsen, M. P., Rivas Plata, E., Shimp, A. D., Widhelm, T. et al. (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 3540.Google Scholar
Schoch, C. L., Sung, G.-H., López-Giráldez, F., Townsend, J. P., Miądlikowska, J., Hofstetter, V., Robbertse, B., Matheny, P. B., Kauff, F., Wang, Z. et al. (2009) The Ascomycota tree of life: a phylum wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224239.Google Scholar
Spribille, T. & Muggia, L. (2013) Expanded taxon sampling disentangles evolutionary relationships and reveals a new family in Peltigerales (Lecanoromycetidae, Ascomycota). Fungal Diversity 58: 171184.Google Scholar
Stamatakis, A. (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.Google Scholar
Wedin, M., Wiklund, E., Jørgensen, P. M. & Ekman, S. (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53: 862871.Google Scholar
Wedin, M., Jørgensen, P. M. & Ekman, S. (2011) Vahliellaceae, a new family of cyanobacterial lichens (Peltigerales, Ascomycetes). Lichenologist 43: 6772.Google Scholar
Zahlbruckner, A. (1919) Vorarbeiten zu einer Flechtenflora Dalmatiens. Oesterreichische Botanische Zeitschrift 68: 6077, 148–165, 237–253, 297–326.Google Scholar
Zahlbruckner, A. (1924–1925) Catalogus Lichenum Universalis. Band III. Leipzig: Borntraeger.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.Google Scholar