Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T15:54:53.141Z Has data issue: false hasContentIssue false

Diversity of the Trypethelium eluteriae group in Thailand (Ascomycota, Trypetheliales)

Published online by Cambridge University Press:  14 January 2016

Theerapat LUANGSUPHABOOL
Affiliation:
Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330Thailand
Jittra PIAPUKIEW
Affiliation:
Department of Botany, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330Thailand
Sittiporn PARNMEN
Affiliation:
Toxicology and Biochemistry Section, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, 11000Thailand
Matthew P. NELSEN
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA
H. Thorsten LUMBSCH
Affiliation:
Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA
Ek SANGVICHIEN
Affiliation:
(corresponding author): Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240Thailand. Email: [email protected]

Abstract

The diversity of the Trypethelium eluteriae group in Thailand was studied using molecular (ITS and mtSSU rDNA sequences), morphological, and chemical data. Three species were recognized, T. eluteriae, T. platystomum, and T. subeluteriae, with the latter two being new records for Thailand. The separation of the three species, which have sometimes been regarded as synonymous, is supported by molecular and phenotypic characters. The chemical profiles of the three species are distinct, while ascospore size, often used to distinguish species in the group, shows some overlap.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aptroot, A. (2009) Trypetheliaceae. Flora of Australia 57: 535552.Google Scholar
Aptroot, A., Saipunkaew, W., Sipman, H. J. M., Sparrius, L. B. & Wolseley, P. A. (2007) New lichens from Thailand, mainly microlichens from Chiang Mai. Fungal Diversity 24: 75134.Google Scholar
Aptroot, A., Lücking, R., Sipman, H. J. M., Umaña, L. & Chaves, J. L. (2008) Pyrenocarpous lichens with bitunicate asci. A first assessment of the lichen biodiversity inventory in Costa Rica. Bibliotheca Lichenologica 97: 1162.Google Scholar
Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B. S., Waller, J. M., Abang, M. M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., Liu, Z. Y. et al. (2009) A polyphasic approach for studying Colletotrichum . Fungal Diversity 39: 183204.Google Scholar
Cubero, O. F. & Crespo, A. (2002) Isolation of nucleic acids from lichens. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (I. Kranner, R. P. Beckett & A. K. Varma, eds): 381392. Berlin: Springer.Google Scholar
Culberson, C. F. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin-layer chromatographic method. Journal of Chromatography 72: 113125.Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google Scholar
Del Prado, R., Schmitt, I., Kautz, S., Palice, Z., Lücking, R. & Lumbsch, H. T. (2006) Molecular data place Trypetheliaceae in Dothideomycetes. Mycological Research 110: 511520.CrossRefGoogle ScholarPubMed
Favaro, L. C. de Lima, de Melo, F. L., Aguilar-Vildoso, C. I. & Araujo, W. L. (2011) Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. Plos One 6: e14828.CrossRefGoogle ScholarPubMed
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Groenewald, M., Daniel, H. M., Robert, V., Poot, G. A. & Smith, M. T. (2008) Polyphasic re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus . Persoonia 21: 1727.Google Scholar
Harris, R. C. (1989) A sketch of the family Pyrenulaceae (Melanommatales) in eastern North America. Memoirs of the New York Botanical Garden 49: 74107.Google Scholar
Harris, R. C. (1995) More Florida Lichens. Including the 10¢ Tour of the Pyrenolichens. New York: Published by the author.Google Scholar
Hawksworth, D. L. (1976) Lichen chemotaxonomy. In Lichenology: Progress and Problems (D. H. Brown, D. L. Hawksworth & R. H. Bailey, eds): 139184. London: Academic Press.Google Scholar
Hong, S. B., Go, S. J., Shin, H. D., Frisvad, J. C. & Samson, R. A. (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 13161329.CrossRefGoogle ScholarPubMed
Hong, S. G., Maccaroni, M., Figuli, P. J., Pryor, B. M. & Belisario, A. (2006) Polyphasic classification of Alternaria isolated from hazelnut and walnut fruit in Europe. Mycological Research 110: 12901300.Google Scholar
Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. (2008) Dictionary of the Fungi. 10th edn. Wallingford: CAB International.Google Scholar
Knutsen, A. K., Robert, V., Poot, G. A., Epping, W., Figge, M., Holst-Jensen, A., Skaar, I. & Smith, M. T. (2007) Polyphasic re-examination of Yarrowia lipolytica strains and the description of three novel Candida species: Candida oslonensis sp. nov., Candida alimentaria sp. nov. and Candida hollandica sp. nov. International Journal of Systematic and Evolutionary Microbiology 57: 24262435.Google Scholar
Lumbsch, H. T. (1998 a) The taxonomic use of metabolic data in lichen-forming fungi. In Chemical Fungal Taxonomy (J. C. Frisvad, P. D. Bridge & D. K. Arora, eds): 345387. New York: M. Dekker.Google Scholar
Lumbsch, H. T. (1998 b) The use of metabolic data in lichenology at the species and subspecific levels. Lichenologist 30: 357367.Google Scholar
Lumbsch, H. T. (2002) Analysis of phenolic products in lichens for identification and taxonomy. In Protocols in Lichenology. Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (I. Kranner, R. P. Beckett & A. K. Varma, eds): 281295. Berlin: Springer.Google Scholar
Makhija, U. & Patwardhan, P. G. (1992) Nomenclatural notes on some species of Trypethelium . International Journal of Mycology and Lichenology 5: 237251.Google Scholar
Makhija, U. & Patwardhan, P. G. (1993) A contribution to our knowledge of the lichen genus Trypethelium (family Trypetheliaceae). Journal of the Hattori Botanical Laboratory 73: 183219.Google Scholar
Montes, M. J., Belloch, C., Galiana, M., Garcia, M. D., Andres, C., Ferrer, S., Torres-Rodriguez, J. M. & Guinea, J. (1999) Polyphasic taxonomy of a novel yeast isolated from Antarctic environment; description of Cryptococcus victoriae sp. nov. Systematic and Applied Microbiology 22: 97105.Google Scholar
Nelsen, M. P., Lücking, R., Grube, M., Mbatchou, J. S., Muggia, L., Plata, E. R. & Lumbsch, H. T. (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Studies in Mycology 64: 135144.CrossRefGoogle ScholarPubMed
Nelsen, M. P., Lücking, R., Mbatchou, J. S., Andrew, C. J., Spielmann, A. A. & Lumbsch, H. T. (2011) New insights into relationships of lichen-forming Dothideomycetes. Fungal Diversity 51: 155162.Google Scholar
Nelsen, M. P., Lücking, R., Aptroot, A., Andrew, C. J., Cáceres, M. E. S., Rivas Plata, E., Gueidan, C., da Silva Canêz, L., Knight, A., Ludwig, L. R. et al. (2014) Elucidating phylogenetic relationships and genus-level classification within the fungal family Trypetheliaceae (Ascomycota: Dothideomycetes). Taxon 63: 974992.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.Google Scholar
Samson, R. A., Houbraken, J., Varga, J. & Frisvad, J. C. (2009) Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia 22: 1427.CrossRefGoogle ScholarPubMed
Sangvichien, E., Hawksworth, D. L. & Whalley, A. J. S. (2011) Ascospore discharge, germination and culture of fungal partners of tropical lichens, including the use of a novel culture technique. IMA Fungus 2: 143153.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758771.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 27252729.Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315322. San Diego: Academic Press.Google Scholar
Wolseley, P. A., Aguirre-Hudson, B. & McCarthy, P. M. (2002) Catalogue of the lichens of Thailand. Bulletin of the British Museum (Natural History), Botany 32: 1359.Google Scholar
Zhou, S. & Stanosz, G. R. (2001) Primers for amplification of mt SSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycological Research 105: 10331044.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.Google Scholar