Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T14:04:35.617Z Has data issue: false hasContentIssue false

Collolechia revisited and a re-assessment of ascus characteristics in Placynthiaceae (Peltigerales, Ascomycota)

Published online by Cambridge University Press:  14 January 2016

Alica KOŠUTHOVÁ
Affiliation:
Department of Cryptogams, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 23, Slovakia Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 61137, Czech Republic
Samantha FERNÁNDEZ-BRIME
Affiliation:
(corresponding author): Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. Email: [email protected]
Martin WESTBERG
Affiliation:
(corresponding author): Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. Email: [email protected]
Mats WEDIN
Affiliation:
(corresponding author): Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. Email: [email protected]

Abstract

We investigated the phylogenetic relationships in the cyanolichen family Placynthiaceae to test the current generic delimitations, where the monotypic Collolechia is currently accepted as distinct, based on differences in ascospores, ascus apex characteristics and the leprose thallus. Bayesian and maximum likelihood phylogenetic analyses of two sequence marker datasets confirmed that Collolechia caesia is nested within Placynthium, and should be called Placynthium caesium (Fr.) Jatta. We reassessed the spore and ascus characteristics and showed that Placynthium caesium falls well within the variation in Placynthium and is thus yet another example of a species that differs from close relatives by its crustose-leprose thallus structure.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory (B. N. Petrov & F. Csaki, eds): 267281. Budapest: Akademiai Kiado.Google Scholar
Bergsten, J., Nilsson, A. N. & Ronquist, F. (2013) Bayesian tests of topology hypotheses with an example from diving beetles. Systematic Biology 62: 660673.Google Scholar
Campbell, J., Fredeen, A. L. & Prescott, C. E. (2010) Decomposition and nutrient release from four epiphytic lichen litters in sub-boreal spruce forests. Canadian Journal of Forest Research 40: 14731484.Google Scholar
Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany 99: 9871001.Google Scholar
Czeika, H. & Czeika, G. (2007) Placynthium in den Alpen und Karpaten sowie in benachbarten Gebieten. Herzogia 20: 2951.Google Scholar
Ekman, S., Wedin, M., Lindblom, L. & Jørgensen, P. M. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). Lichenologist 46: 627656.Google Scholar
Fedrowitz, K., Kuusinen, M. & Snäll, T. (2012) Metapopulation dynamics and future persistence of epiphytic cyanolichens in a European boreal forest ecosystem. Journal of Applied Ecology 49: 493502.Google Scholar
Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 176: 368376.Google Scholar
Gilbert, O. L. & James, P. W. (2009) Placynthium (Ach.) Gray (1821). In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert & P. A. Wolseley, eds): 714718. London: British Lichen Society.Google Scholar
Goward, T. & Arsenault, A. (2000) Cyanolichens and conifers: implications for global conservation. Forest, Snow and Landscape Research 75: 303318.Google Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.Google Scholar
Hedenås, H. & Ericson, L. (2008) Species occurrences at stand level cannot be understood without considering the landscape context: cyanolichens on aspen in boreal Sweden. Biological Conservation 141: 710718.Google Scholar
Jørgensen, P. M. (2005) Placynthium garovaglioi not present in Scandinavia. Graphis Scripta 17: 37.Google Scholar
Jørgensen, P. M. (2007) Placynthiaceae . In Nordic Lichen Flora Volume 3. Cyanolichens (T. Ahti, P. M. Jørgensen, H. Kristinsson, R. Moberg, U. Søchting & G. Thor, eds): 134142. Uddevalla: Nordic Lichen Society.Google Scholar
Jovan, S. (2008) Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California. General Technical Report PNW-GTR-737. Portland, Oregon: US Department of Agriculture, Forest Service, Pacific Northwest Research Station.Google Scholar
Kass, R. E. & Raftery, A. E. (1995) Bayes factors. Journal of the American Statistical Association 90: 773795.Google Scholar
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C. et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 16471649.Google Scholar
Keuck, G. (1977) Ontogenetisch-systematische Studie über Erioderma. Bibliotheca Lichenologica 6: 1175.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111120.CrossRefGoogle ScholarPubMed
Larsson, A. (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30: 32763278.Google Scholar
Lumbsch, H. T., Schmitt, I., Palice, Z., Wiklund, E., Ekman, S. & Wedin, M. (2004) Supraordinal phylogenetic relationships of Lecanoromycetes based on a Bayesian analysis of combined nuclear and mitochondrial sequences. Molecular Phylogenetics and Evolution 31: 822832.Google Scholar
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628651.Google Scholar
Mason-Gamer, R. J. & Kellogg, E. A. (1996) Testing for phylogenetic conflict among molecular datasets in the tribe Triticiae (Gramineae). Systematic Biology 45: 524545.CrossRefGoogle Scholar
Miądlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C. et al. (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.CrossRefGoogle Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.Google Scholar
Nash, T. H. III (2008) Nitrogen, its metabolism and potential contribution to ecosystems. In Lichen Biology, 2nd ed. (T. H. Nash III ed.): 216233. Cambridge: Cambridge University Press.Google Scholar
Nelsen, M. P. & Gargas, A. (2009) Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112: 404417.CrossRefGoogle Scholar
Otálora, M., Jørgensen, P. M. & Wedin, M. (2014) A revised generic classification of the jelly lichens, Collemataceae. Fungal Diversity 64: 275293.Google Scholar
Øvstedal, D. O., Tønsberg, T. & Elvebakk, A. (2009) The lichen flora of Svalbard. Sommerfeltia 33: 1393.Google Scholar
Posada, D. (2003) Using Modeltest and PAUP* to select a model of nucleotide substitution. In Current Protocols in Bioinformatics (A. D. Baxevanis, D. B. Davison, R. D. M. Page, G. A. Petsko, L. D. Stein & G. D. Stormo, eds): 6.5.16.5.14. New Jersey: John Wiley & Sons.Google Scholar
Posada, D. (2008) jModeltest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.CrossRefGoogle ScholarPubMed
Price, K. & Hochachka, G. (2001) Epiphytic lichen abundance: effects on stand age and composition in coastal British Columbia. Ecological Applications 11: 904913.Google Scholar
Prieto, M. & Wedin, M. (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8 : e65576. doi: 10.1371/journal.pone.0065576.Google Scholar
Rambold, G. & Triebel, D. (1992) The inter-lecanoralean associations. Bibliotheca Lichenologica 48: 1201.Google Scholar
Rikkinen, J. (2002) Cyanolichens: an evolutionary overview. In Cyanobacteria in Symbiosis (A. N. Rai, B. Bergman & U. Rasmussen, eds): 3172. Dordrecht: Kluwer Academic Publishers.Google Scholar
Rikkinen, J. (2015) Cyanolichens. Biodiversity and Conservation 4: 973993.Google Scholar
Ronquist, F., Huelsenbeck, J. & Teslenko, M. (2011) Draft MrBayes version 3.2 Manual: Tutorials and Model Summaries. http://mrbayes.sourceforge.net/mb3.2_manual.pdf. Accessed 27 February 2015.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Scheidegger, C., Groner, U., Keller, C. & Stofer, S. (2002) Biodiversity assessment tools - lichens. In Monitoring with Lichens - Monitoring Lichens. NATO Science Series. IV. (P. L. Nimis, C. Scheidegger & P. A. Wolseley, eds): 359365. Dordrecht: Kluwer Academic Publishers.Google Scholar
Schmitt, I., Crespo, A., Divakar, P. K., Fankhauser, J. D., Herman-Sackett, E., Kalb, K., Nelsen, N. P., Nelson, N. A., Rivas-Plata, E., Shimp, A. D. et al. (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 3540.Google Scholar
Schoch, C. L., Sung, G. H., López-Giráldez, F., Townsend, J. P., Miądlikowska, J., Hofstetter, V, Robbertse, B., Matheny, P. B., Kauff, F., Wang, Z. et al. (2009) The Ascomycota tree of life: a phylum wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224239.Google Scholar
Spribille, T. & Muggia, L. (2013) Expanded taxon sampling disentangles evolutionary relationships and reveals a new family in Peltigerales (Lecanoromycetideae, Ascomycota). Fungal Diversity 58: 171184.Google Scholar
Tamura, K. & Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512526.Google Scholar
Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In Some Mathematical Questions in Biology–DNA Sequence Analysis (R. M. Miura, ed.): 5786. Rhode Island: American Mathematical Society.Google Scholar
Tønsberg, T. (1992) The sorediate and isidiate, corticolous, crustose lichens in Norway. Sommerfeltia 14: 1331.CrossRefGoogle Scholar
Wedin, M., Wiklund, E., Crewe, A., Döring, H., Ekman, S., Nyberg, Å., Schmitt, I. & Lumbsch, H. T. (2005) Phylogenetic relationships of the Lecanoromycetes (Ascomycota) as revealed by analyses of mtSSU and nLSU rDNA sequence data. Mycological Research 109: 159172.Google Scholar
Wedin, M., Jørgensen, P. M. & Wiklund, E. (2007) Molecular phylogeny suggests the establishment of Massalongiaceae, fam. nov. (Lecanorales, Lecanoromycetes, Ascomycota). Lichenologist 39: 6167.Google Scholar
Wedin, M., Jørgensen, P. M. & Ekman, S. (2011) Vahliellaceae, a new family of cyanobacterial lichens (Peltigerales, Ascomycota). Lichenologist 43: 6772.Google Scholar
Westberg, M., Millanes, A. M., Knudsen, K. & Wedin, M. (2015) Phylogeny of the Acarosporaceae (Lecanoromycetes, Ascomycota, Fungi) and the evolution of carbonized ascomata. Fungal Diversity 73: 145158.Google Scholar
Wiklund, E. & Wedin, M. (2003) The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. Cladistics 19: 419431.Google Scholar
Wirth, V., Hauck, M. & Schultz, M. (2013) Die Flechten Deutschlands, Band 1 & 2. Stuttgart: Eugen Ulmer.Google Scholar
Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7: 203214.Google Scholar
Zharkikh, A. (1994) Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution 39: 315329.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar
Zwickl, D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D thesis, University of Texas at Austin.Google Scholar