Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T15:49:31.802Z Has data issue: false hasContentIssue false

Climate change-induced range shift of the endemic epiphytic lichen Lobaria pindarensis in the Hindu Kush Himalayan region

Published online by Cambridge University Press:  26 April 2019

Shiva DEVKOTA
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland. Email: [email protected]
Lyudmyla DYMYTROVA
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland. Email: [email protected]
Ram Prasad CHAUDHARY
Affiliation:
Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kirtipur, Nepal.
Silke WERTH
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland. Email: [email protected] Institute of Systematic Botany and Mycology, Department Biology I, University of Munich, Menzingerstraße 67, 80638 München, Germany.
Christoph SCHEIDEGGER
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland. Email: [email protected]

Abstract

The Hindu Kush Himalayan (HKH) region harbours some of the richest and most diverse ecosystems on the planet that are now facing substantial threats through changes in climate, land use and human population growth, with serious consequences for the biodiversity in this mountainous region. In this paper we evaluated the effects of climate change on the distribution of the tripartite epiphytic macrolichen Lobaria pindarensis, considered to be endemic to the Himalayas. To predict the current and future distribution of this species we applied the Random Forest modelling algorithm and climatic variables with a post-processing of projected distributions using a map of habitat types in the study region. We calibrated models based on 1397 species presences within an altitudinal range of 2036–4000 m and extrapolated them according to two IPCC scenarios of climate change (RCP 2·6 and RCP 8·5). Based on the results of ensemble modelling, two new localities where L. pindarensis might potentially occur were predicted. Our simulations predicted a range expansion of this epiphytic lichen to the north-east and to higher altitudes in response to climate change, although the species’ low dispersal abilities and the local availability of trees as a substratum will considerably limit latitudinal and altitudinal shifts. By contrast, assuming the species can migrate to previously unoccupied areas, and depending on different future climate scenarios, our models forecasted a habitat loss of 30–70% for L. pindarensis. The main reason for the simulated habitat loss is the expected increase in mean annual temperature (by 1·5–3·7 °C) and total annual precipitation (by 56–125 mm). Our results contribute further evidence for the high sensitivity of tripartite macrolichens, especially those from mountain areas, to climate change and particularly emphasize the vulnerability of L. pindarensis. Thus, we stress the need to develop and formulate conservation measures and strategies for the protection of this endemic species in the Hindu Kush Himalayan region.

Type
Articles
Copyright
Copyright © British Lichen Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, K. P., Vetaas, O. R. & Birks, H. J. B. (2011) Orchid species richness along Himalayan elevational gradients. Journal of Biogeography 38: 18211833.Google Scholar
Allen, J. L. & Lendemer, J. C. (2016) Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25: 555568.Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.Google Scholar
Anderson, J. T., Panetta, A. M. & Mitchell-Olds, T. (2012) Evolutionary and ecological responses to anthropogenic climate change. Plant Physiology 160: 17281740.Google Scholar
Aptroot, A. & Feijen, F. J. (2002) Annotated checklist of the lichens and lichenicolous fungi of Bhutan. Fungal Diversity 11: 2148.Google Scholar
Aptroot, A. & van Herk, C. M. (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293298.Google Scholar
Araújo, M. B. & Peterson, T. A. (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 97: 15271539.Google Scholar
Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. (2010) The elevation gradient of lichen species richness in Nepal. Lichenologist 42: 8396.Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327338.Google Scholar
Bergamini, A., Ungricht, S. & Hofmann, H. (2009) An elevational shift of cryophilous bryophytes in the last century – an effect of climate warming? Diversity and Distributions 15: 871879.Google Scholar
Bhattarai, K. R. & Vetaas, O. R. (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography 12: 327340.Google Scholar
Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. (2004) Relationship between plant species richness and biomass in an arid sub-alpine grassland of the central Himalayas, Nepal. Folia Geobotanica 39: 5771.Google Scholar
Bolliger, J., Bergamini, A., Stofer, S., Kienast, F. & Scheidegger, C. (2007) Predicting the potential spatial distributions of epiphytic lichen species at the landscape scale. Lichenologist 39: 279291.Google Scholar
Braidwood, D. & Ellis, C. J. (2012) Bioclimatic equilibrium for lichen distributions on disjunct continental landmasses. Botany 90: 13161325.Google Scholar
Breiman, L. (2001) Random forests. Machine Learning 45: 532.Google Scholar
Chaudhary, R. P. (1998) Biodiversity in Nepal: Status and Conservation. Bangkok and Saharanpur: S. Devi & Teepress Books.Google Scholar
Chettri, N., Shakya, B., Thapa, R. & Sharma, E. (2010) Status of a protected area system in the Hindu Kush-Himalayas: an analysis of PA coverage. International Journal of Biodiversity Science and Management 4: 164178.Google Scholar
Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20: 3746.Google Scholar
Cornejo, C., Chabanenko, S. & Scheidegger, C. (2009) Phylogenetic analysis indicates transitions from vegetative to sexual reproduction in the Lobaria retigera group (Lecanoromycetidae, Ascomycota). Lichenologist 41: 275284.Google Scholar
D'Andrea, L., Broennimann, O., Kozlowski, G., Guisan, A., Morin, X., Keller-Senften, J. & Felber, F. (2009) Climate change, anthropogenic disturbance and the northward range expansion of Lactuca serriola (Asteraceae). Journal of Biogeography 36: 15731587.Google Scholar
Devkota, S., Cornejo, C., Werth, S., Chaudhary, R. P. & Scheidegger, C. (2014) Characterization of microsatellite loci in the Himalayan lichen fungus Lobaria pindarensis (Lobariaceae). Applications in Plant Sciences 2: 1300101.Google Scholar
Devkota, S., Keller, C., Olley, L., Werth, S., Chaudhary, R. P. & Scheidegger, C. (2017) Distribution and national conservation status of the lichen family Lobariaceae (Peltigerales): from subtropical luxuriant forests to the alpine scrub of Nepal Himalaya. Mycosphere 8: 630647.Google Scholar
Dimri, A. & Dash, S. (2012) Wintertime climatic trends in the western Himalayas. Climate Change 111: 775800.Google Scholar
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García Marquéz, J. R., Gruber, B., Lafourcade, B., Leitão, P. J., et al. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 2746.Google Scholar
Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., et al. (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change 2: 619622.Google Scholar
Dymytrova, L., Stofer, S., Ginzler, C., Breiner, F. T. & Scheidegger, C. (2016) Forest-structure data improve distribution models of threatened habitat specialists: implications for conservation of epiphytic lichens in forest landscapes. Biological Conservation 196: 3138.Google Scholar
Eaton, S., Ellis, C., Genney, D., Thompson, R., Yahr, R. & Haydon, D. T. (2018) Adding small species to the big picture: species distribution modelling in an age of landscape scale conservation. Biological Conservation 217: 251258.Google Scholar
Elith, J. & Graham, C. H. (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32: 6667.Google Scholar
Ellis, C. J. (2013) A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany 91: 111.Google Scholar
Ellis, C. J., Coppins, B. J. & Dawson, T. P. (2007 a) Predicted response of the lichen epiphyte Lecanora populicola to climate change scenarios in a clean-air region of northern Britain. Biological Conservation 135: 396404.Google Scholar
Ellis, C. J., Coppins, B. J., Dawson, T. P. & Seaward, M. R. D. (2007 b) Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation 140: 217235.Google Scholar
Ellis, C. J., Geddes, H., McCheyne, N. & Stansfield, A. (2017) Lichen epiphyte response to non-analogue monthly climates: a critique of bioclimatic models. Perspectives in Plant Ecology, Evolution and Systematics 25: 4558.Google Scholar
Engler, R., Guisan, A. & Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41: 263274.Google Scholar
Engler, R., Randin, C. F., Vittoz, P., Czáka, T., Beniston, M., Zimmermann, N. E. & Guisan, A. (2009) Predicting future distributions of mountain plants under climate change: does dispersal capacity matter? Ecography 32: 3445.Google Scholar
Feria, P. A. & Peterson, T. A. (2002) Prediction of bird community composition based on point-occurrence data and inferential algorithms: a valuable tool in biodiversity assessments. Diversity and Distributions 8: 4956.Google Scholar
Fielding, A. H. & Bell, J. F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 3849.Google Scholar
Fordham, D. A., Brook, B. W., Moritz, C. & Nogués-Bravo, D. (2014) Better forecasts of range dynamics using genetic data. Trends in Ecology and Evolution 29: 436443.Google Scholar
Gaire, N. P., Koirala, M., Bhuju, D. R. & Borgaonkar, H. P. (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Climate of the Past 10: 12771290.Google Scholar
Grau, O., Grytnes, J.-A. & Birks, H. J. B. (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography 34: 19071915.Google Scholar
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 9931009.Google Scholar
Hauck, M. (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in north-western Central Europe. Global Change Biology 15: 26532661.Google Scholar
Hernandez, P. A., Franke, I., Herzog, S. K., Pacheco, V., Paniagua, L., Qintana, H. L., Soto, A., Swenson, J. J., Tovar, C., Valqui, T. H., et al. (2008) Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation 17: 13531366.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
ICIMOD (2007) Ecological Regions of Hindu Kush Himalayan (HKH) Region. Digital polygon dataset. ICIMOD, Kathmandu, Nepal.Google Scholar
IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L., eds). Cambridge and New York: Cambridge University Press.Google Scholar
Jarvis, A., Yeaman, S., Guarino, L. & Tohme, J. (2005) The role of geographic analysis in locating, understanding, and using plant genetic diversity. Methods in Enzymology 395: 279298.Google Scholar
Joshi, M. & Awasthi, D. D. (1982) The lichen family Stictaceae in India and Nepal. Biological Memoirs 7: 165190.Google Scholar
Katuwal, H. B., Basnet, K., Khanal, B., Devkota, S., Rai, S. K., Gajurel, J. P., Scheidegger, C. & Nobis, M. P. (2016) Seasonal changes in bird species and feeding guilds along elevational gradients of the Central Himalayas, Nepal. PLoS ONE 11: 117.Google Scholar
Lang, S. I., Cornelissen, J. H. C., Shaver, G. R., Ahrens, M., Callaghan, T. V., Molau, U., Ter Braak, C. J. F., Hölzer, A. & Aerts, R. (2012) Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Global Change Biology 18: 10961107.Google Scholar
Lenoir, J. & Svenning, J. C. (2015) Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38: 1528.Google Scholar
Meier, E. S., Lischke, H., Schmatz, D. R. & Zimmermann, N. E. (2012) Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecology and Biogeography 21: 164178.Google Scholar
Merow, C., Smith, M. J. & Silander, J. A. (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 10581069.Google Scholar
Miehe, G. (1989) Vegetation patterns on Mount Everest as influenced by monsoon and föhn. Vegetatio 79: 2132.Google Scholar
Miehe, G. (2015) Glacial foreland successions. In Nepal: An Introduction to the Natural History, Ecology and Human Environment of the Himalayas (Miehe, G., Pendry, C. & Chaudhary, R. P., eds): 8090. Edinburgh: Royal Botanic Garden Edinburgh.Google Scholar
Miehe, G., Winniger, M., Boehner, J. & Zhang, Y. (2001) Climatic diagrams of high Asia. Erdkunde 55: 9497.Google Scholar
Morales-Castilla, I., Davies, T. J., Pearse, W. D. & Peres-Neto, P. (2017) Combining phylogeny and co-occurrence to improve single species distribution models. Global Ecology and Biogeography 26: 740752.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Nascimbene, J., Gabriele, C., Benesperi, R., Catalano, I., Cataldo, D., Grillo, M., Isocrono, D., Matteucci, E., Ongaro, S., Potenza, G., et al. (2016) Climate change fosters the decline of epiphytic Lobaria species in Italy. Biological Conservation 201: 377384.Google Scholar
Negi, H. R. (2000) On the patterns of abundance and diversity of macrolichens of Chopta-Tungnath in Garhwal Himalaya. Journal of Bioscience 25: 367378.Google Scholar
Ohsawa, M., Shakya, P. R. & Numata, M. (1986) Distribution and succession of West Himalayan forest types in the eastern part of the Nepal Himalaya. Mountain Research and Development 6: 143157.Google Scholar
Oke, O. A. & Thompson, K. A. (2015) Distribution models for mountain plant species: the value of elevation. Ecological Modelling 301: 7277.Google Scholar
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637669.Google Scholar
Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 3742.Google Scholar
Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., Coldea, G., Dick, J., Erschbamer, B., Calzado, R. F., et al. (2012) Recent plant diversity changes on Europe's mountain summits. Science 336: 353355.Google Scholar
Pearce, J. & Lindenmayer, D. (1998) Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern Australia. Natural Area Journal 6: 238243.Google Scholar
Pearson, R. G. & Dawson, T. P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361371.Google Scholar
Pinokiyo, A., Singh, K. P. & Singh, J. S. (2008) Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40: 4762.Google Scholar
Poudel, P. K. & Sipos, J. (2014) Conservation status affects elevational gradient in bird diversity in the Himalaya: a new perspective. Global Ecology and Conservation 2: 338348.Google Scholar
Prasad, A. M., Iverson, L. R. & Liaw, A. (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9: 181199.Google Scholar
Rai, H., Upreti, D. K. & Gupta, R. K. (2012) Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodiversity and Conservation 21: 97113.Google Scholar
Rai, S. K., Sharma, S., Shrestha, K. K., Gajurel, J. P., Devkota, S., Nobis, M. P. & Scheidegger, C. (2016) Effects of the environment on species richness and composition of vascular plants in Manaslu Conservation Area and Sagarmatha region of Nepalese Himalaya. Banko Janakari 26: 316.Google Scholar
Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A. & Peterson, T. A. (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426: 837841.Google Scholar
Raxworthy, C. J., Pearson, R. G., Rabibisoa, N., Rakotondrazafy, A. M., Ramanamanjato, J. P., Raselimanana, A. P., Wu, S., Nussbaum, R. A. & Stone, D. A. (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology 14: 17031720.Google Scholar
Rokaya, M. B., Münzbergová, Z., Shrestha, M. R. & Timsina, B. (2012) Distribution patterns of medicinal plants along an elevational gradient in central Himalaya, Nepal. Journal of Mountain Science 9: 201213.Google Scholar
Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, E. & Martinez, I. (2017) Case study of the implications of climate change for lichen diversity and distributions. Biodiversity and Conservation 26: 11211141.Google Scholar
Scheidegger, C., Nobis, M. P. & Shrestha, K. K. (2010) Biodiversity and livelihood in land-use gradients in an era of climate change – outline of a Nepal-Swiss research project. Botanica Orientalis: Journal of Plant Science 7: 717.Google Scholar
Sharma, E. (2012) Climate change and its impacts in the Hindu Kush-Himalayas: an introduction. In Climate Change Modeling for Local Adaptation in the Hindu Kush-Himalayan Region (Community, Environment and Disaster Risk Management, Vol. 11) (Lamadrid, A. & Ilan, K., eds): 1732. Bingley, West Yorkshire: Emerald Group Publishing Limited.Google Scholar
Sharma, E. & Tsering, K. (2009) Climate change in the Himalayas: the vulnerability of biodiversity. Sustainable Mountain Development 55: 1012.Google Scholar
Shi, P. & Ning, W. (2013) The timberline ecotone in the Himalayan region: an ecological review. In High-Altitude Rangelands and their Interfaces in the Hindu Kush Himalayas (Ning, W., Rawat, G. S., Joshi, S., Ismail, M. & Sharma, E., eds): 108116. Kathmandu, Nepal: ICIMOD.Google Scholar
Shrestha, A., Wake, C., Dibb, J. & Mayewski, P. (2000) Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. International Journal of Climatology 20: 317327.Google Scholar
Sillett, S. C., McCune, B., Peck, J. E., Rambo, T. R. & Ruchty, A. (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecological Applications 10: 789799.Google Scholar
Singh, S., Bassignana-Khadka, I., Karky, B. & Sharma, E. (2011) Climate Change in the Hindu Kush-Himalayas: The State of Current Knowledge. Kathmandu, Nepal: ICIMOD.Google Scholar
Škaloud, P., Friedl, T., Hallmann, C., Beck, A. & Dal Grande, F. (2016) Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). Journal of Phycology 52: 599617.Google Scholar
Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., et al. (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556: 231234.Google Scholar
Subedi, S. C., Bhattarai, K. R. & Chaudhary, R. P. (2015) Distribution pattern of vascular plant species of mountains in Nepal and their fate against global warming. Journal of Mountain Science 12: 13451354.Google Scholar
Szczepańska, K., Pruchniewicz, D. & Kossowska, M. (2015) Modeling the potential distribution of three lichens of the Xanthoparmelia pulla group (Parmeliaceae, Ascomycota) in Central Europe. Acta Societatis Botanicorum Poloniae 84: 431438.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32: 369373.Google Scholar
Thuiller, W., Georges, D. & Engler, R. (2013) Biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3. URL: https://cran.r-project.org/package=biomod2Google Scholar
Tse-ring, K., Sharma, E., Chettri, N. & Shrestha, A. (2010) Climate Change Impact and Vulnerability in the Eastern Himalayas – Synthesis Report. Climate Change Vulnerability of Mountain Ecosystems in the Eastern Himalayas. Kathmandu, Nepal: ICIMOD.Google Scholar
Upreti, D. K. & Negi, H. R. (1996) Folk use of Thamnolia vermicularis (Swartz) Ach. in Lata Village of Nanda Devi Biosphere Reserve. Ethnobotany 8: 8386.Google Scholar
Upreti, D. K. & Ranjan, M. (1988) A note on some macrolichens from Thimphu District, Bhutan. Journal of Recent Advances in Applied Sciences 3: 426432.Google Scholar
van Herk, C. M., Aptroot, A. & van Dobben, H. F. (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34: 141154.Google Scholar
Vetaas, O. R. & Grytnes, J. (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography 11: 291301.Google Scholar
Walker, W. S., Kellndorfer, J. M. & Pierce, L. E. (2007) Quality assessment of SRTM C- and X-band interferometric data: implications for the retrieval of vegetation canopy height. Remote Sensing of Environment 106: 428448.Google Scholar
Wang, L. S. & Qian, Z. G. (2013) Illustrated Medicinal Lichens of China. Kunming: Yunnan Keji Chubanshe. [In Chinese]Google Scholar
Wang, L. S., Narui, T., Harada, H., Culberson, C. F. & Culberson, W. L. (2001) Ethnic uses of lichens in Yunnan, China. Bryologist 104: 345349.Google Scholar
Waser, L. T., Kuechler, M., Schwarz, M., Ivits, E., Stofer, S. & Scheidegger, C. (2007) Prediction of lichen diversity in an UNESCO biosphere reserve – correlation of high resolution remote sensing data with field samples. Environmental Modeling and Assessment 12: 315328.Google Scholar
Werth, S., Wagner, H. H., Gugerli, F., Holderegger, R., Csencsics, D., Kalwij, J. M., Scheidegger, C. & Jesse, M. (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87: 20372046.Google Scholar
Wiersma, Y. F. & Skinner, R. (2011) Predictive distribution model for the boreal felt lichen Erioderma pedicellatum in Newfoundland, Canada. Endangered Species Research 15: 115127.Google Scholar
Wolf, J. H. D. (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden 80: 928960.Google Scholar
Yang, X., Skidmore, A. K., Melick, D. R., Zhou, Z. & Xu, J. (2006) Mapping non-wood forest product (matsutake mushrooms) using logistic regression and a GIS expert system. Ecological Modelling 198: 208218.Google Scholar
Yoshimura, I. (1969) Lichenological notes 2–6. Journal of the Hattori Botanical Laboratory 32: 6778.Google Scholar
Zomer, R. J., Xu, J., Wang, M., Trabucco, A. & Li, Z. (2015) Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biological Conservation 184: 335345.Google Scholar
Supplementary material: File

Devkota Supplementary Material

Supplementary Materials

Download Devkota Supplementary Material(File)
File 10.7 MB