Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T05:52:30.877Z Has data issue: false hasContentIssue false

Changes in the epiphytic lichen biota in Scots pine (Pinus sylvestris) stands affected by a colony of grey heron (Ardea cinerea): a case study from northern Poland

Published online by Cambridge University Press:  31 October 2013

Katarzyna ŻÓŁKOŚ
Affiliation:
Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland. Email: [email protected]
Martin KUKWA
Affiliation:
Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland. Email: [email protected]
Renata AFRANOWICZ-CIEŚLAK
Affiliation:
Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland. Email: [email protected]

Abstract

Bird colonies affect all elements of inhabited ecosystems, such as the soil, floristic composition and phytocoenosis structure, including the lichen biota. To date, the few papers focusing on changes in the composition of lichen vegetation caused by bird colonies are concerned with saxicolous ornithocoprophilous communities. The aim of this study was to define the impact of the grey heron in two breeding colonies on epiphytic lichens on Scots pines presently inhabited by birds, as well as those recently abandoned. Analysis of the lichen biota showed that the species composition and number of lichens were significantly modified in the functioning colony and the post-colony areas when compared with the control plots never inhabited by grey heron. Within the functioning and post-colony areas, mainly species with a wide ecological amplitude and those characteristic of fertile habitats dominated, while acidophilous and ubiquitous taxa occurred in the control plots. Multivariate analyses (for species abundance and ecological characteristics) showed that lichens growing within the functioning colony and post-colony areas differed significantly from those in the control area in their habitat requirements, as they demanded nutrient-rich, low or moderately moist and deacidified bark. Within the control plots, lichens preferring a relatively acidic and slightly nitrified substratum occurred. The direct impact of bird excrement and the fertilized bark could cause significant modifications in qualitative and quantitative species composition compared to the epiphytic lichen biota usually occurring on Scots pines.

Type
Articles
Copyright
Copyright © British Lichen Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, I., Marchant, N. & Cranfield, R. (2000) Long-term change in the floristic composition and vegetation structure of Carnac Island, Western Australia. Journal of Biogeography 27: 333346.Google Scholar
Adamonytė, G., Iršėnaitė, R., Motiejūnaitė, J., Taraškevičius, R. & Matulevičiūtė, D. (2013) Myxomycetes in a forest affected by great cormorant colony: a case study in Western Lithuania. Fungal Diversity 59: 131146.Google Scholar
Armstrong, R. A. (1984) The influence of bird droppings and uric acid on the radial growth of five species of saxicolous lichens. Environmental and Experimental Botany 24: 9599.Google Scholar
Armstrong, R. A. (1994) The influence of bird droppings on the growth of lichen fragments transplanted to slate and cement substrates. Symbiosis 17: 7586.Google Scholar
Armstrong, R. A. (2000) Competitive interactions between four foliose lichen species with and without nutrient enrichment. Symbiosis 28: 323335.Google Scholar
Barkman, J. J. (1958) Phytosociology and Ecology of Cryptogamic Epiphytes. Assen: Van Gorcum & Company.Google Scholar
Berthelsen, K., Olsen, H. & Søchting, U. (2008) Indicator values for lichens on Quercus as a tool to monitor ammonia in Denmark. Sauteria 15: 5977.Google Scholar
Breslina, I. P. & Karpovich, V. N. (1969) Razvitie pastitel'nosti pod vliyaniem zhiznedeyatel'nosti kolonial'nych ptic. Botanicheskii Zhurnal 54: 690696.Google Scholar
Bukaciński, D., Rutkowska, A. & Bukacińska, M. (1994) The effect of nesting black-backed gulls (Larus ridibundus) on the soil and vegetation of a Vistula River island, Poland. Annales Botanici Fennici 31: 233243.Google Scholar
Ellenberg, H. (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1255.Google Scholar
Ellis, J. C. (2005) Marine birds on land: a review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecology 181: 227241.Google Scholar
Gaio-Oliveira, G., Dahlman, L., Palmqvist, K. & Máguas, C. (2004) Ammonium uptake in the nitrophytic lichen Xanthoria parietina and its effects on vitality and balance between symbionts. Lichenologist 36: 7586.Google Scholar
García, L. V., Marañón, T., Ojeda, F., Clemente, L. & Redondo, R. (2002) Seagull influence on soil properties, chenopod shrub distribution, and leaf nutrient status in semi-arid Mediterranean islands. Oikos 98: 7586.CrossRefGoogle Scholar
Grönlie, A. M. (1948) The ornithocoprophilous vegetation of the bird-cliffs of Rost in the Lofoten islands, northern Norway. Nytt Magazin for Naturvidenskaberne 86: 117243.Google Scholar
Hogg, E. H. & Morton, J. K. (1983) The effects of nesting gulls on the vegetation and soil of islands in the Great Lakes. Canadian Journal of Botany 61: 32403254.Google Scholar
Hogg, E. H., Morton, J. K. & Venn, J. M. (1988) Biogeography of island floras in the Great Lakes. I. Species richness and composition in relation to gull nesting activities. Canadian Journal of Botany 67: 961969.Google Scholar
Ishida, A. (1996) Effects of the common cormorant, Phalacrocorax carbo, on evergreen forests in two nest sites at Lake Biwa, Japan. Ecological Research (Tokyo) 11: 193200.Google Scholar
Jongman, R. H. G., ter Braak, C. J. F. & van Tongeren, O. F. R. (1995) Data Analysis in Community and Landscape Ecology. Cambridge: Cambridge University Press.Google Scholar
Kukwa, M. (2006) The lichen genus Lepraria in Poland. Lichenologist 38: 293305.Google Scholar
Laiviņš, M. & Čekstere, G. (2008) Kolonijās ligzdojošo zivju gārņu (Ardea cinerea) un jūraskraukļu (Phalacrocorax carbo) ietekme uz Latvijas ezera salu augu valsti un augsnēm. Mežzinatne 18: 7484.Google Scholar
Laundon, J. R. (1992) Lepraria in the British Isles. Lichenologist 24: 315350.Google Scholar
Ligeza, S. & Smal, H. (2003) Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere 52: 595602.CrossRefGoogle ScholarPubMed
Maesako, Y. (1991) Effect of streaked shearwater Calonectris leucomelas on species composition of Persea thunbergii forest on Kanmurijima Island, Kyoto Prefecture, Japan. Ecological Research (Tokyo) 6: 371378.CrossRefGoogle Scholar
Motiejūnaitė, J. (2007) Epiphytic lichen community dynamics in deciduous forests around a phosphorus fertiliser factory in central Lithuania. Environmental Pollution 146: 341349.Google Scholar
Mun, H. T. (1997) Effects of colony nesting of Ardea cinerea and Egretta alba modesta on soil properties and herb layer composition in a Pinus densiflora forest. Plant Soil 197: 5559.CrossRefGoogle Scholar
Nash, T. H. III (ed.) (2008) Lichen Biology. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Norton, D. A., Delange, P. J., Garnock-Jones, P. J. & Given, D. R. (1997) The role of seabirds and seals in the survival of coastal plants: lessons from New Zealand Lepidium (Brassicaceae). Biodiversity and Conservation 6: 765785.Google Scholar
Olech, M. (1990) Preliminary studies on ornithocoprophilous lichens of the Arctic and Antarctic regions. Proceedings of the NIPR Symposium on Polar Biology 3: 218223.Google Scholar
Olsen, H. B., Berthelsen, K., Andersen, H. V. & Søchting, U. (2010) Xanthoria parietina as a monitor of ground-level ambient ammonia concentrations. Environmental Pollution 158: 455461.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Otnyukova, T. & Sekretenko, O. P. (2008) Spatial distribution of lichens on twigs in remote Siberian silver fir forests indicates changing atmospheric conditions. Lichenologist 40: 243256.Google Scholar
Paradis, G. & Larenzoni, C. (1996) Impact des oiseaux marins nicheurs sur la dynamique de la végétation de quelques îlots satellites de la Corse (France). Colloques Phytosociologiques 23: 395431.Google Scholar
Rai, A. N. (1988) Nitrogen metabolism. In Handbook of Lichenology, Vol. I (Galun, M., ed.): 201237. Boca Raton: CRC Press.Google Scholar
Rusu, A.-M., Jones, G. C., Chimonides, P. D. J. & Purvis, O. W. (2006) Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environmental Pollution 143: 8188.CrossRefGoogle ScholarPubMed
Schaffers, A. P. & Sýkora, K. V. (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11: 225244.Google Scholar
Seppelt, R. D., Broady, P. A., Pickard, J. & Adamson, D. A. (1988) Plants and landscape in the Vestfold Hills, Antarctica. Hydrobiologia 165: 185196.Google Scholar
Sobey, D. G. & Kenworthy, J. B. (1979) The relationship between herring gulls and the vegetation of their breeding colonies. Journal of Ecology 67: 11281137.Google Scholar
Sparrius, L. B. (2007) Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of the Netherlands. Environmental Pollution 146: 375379.Google Scholar
ter Braak, C. J. F. & Šmilauer, P. (2002) CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4.5). Ithaca, New York: Microcomputer Power.Google Scholar
Valladares, F. & Sancho, L. G. (1993) Biología de las comunidades liquénicas de los posadero rocosos de aves en el Sistema Central español. Rivasgodaya 7: 568.Google Scholar
van Dobben, H. F. (1996) Decline and recovery of epiphytic lichens in an agricultural area in the Netherlands (1900–1988). Nova Hedwigia 62: 477485.Google Scholar
van Herk, C. M. (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 920.Google Scholar
van Herk, C. M. (2009) Climate change and ammonia from cars as notable recent factors influencing epiphytic lichens in Zeeland, Netherlands. Bibliotheca Lichenologica 99: 205224.Google Scholar
Vidal, E., Médail, F., Tatoni, T., Roche, P. & Vidal, P. (1998) Impact of gull colonies on the flora of the Riou archipelago (Mediterranean islands of south-east France). Biodiversity and Conservation 84: 235243.Google Scholar
Wirth, V. (2010) Ökologische Zeigerwerte von Flechten. Herzogia 23: 229248.Google Scholar
Wolseley, P., James, P. W., Theobald, M. R. & Sutton, M. A. (2006) Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 38: 161176.Google Scholar
Wolseley, P., Sutton, M. A., Leith, I. D. & van Dijk, N. (2010) Epiphytic lichens as indicators of ammonia concentrations across the UK. Bibliotheca Lichenologica 105: 7585.Google Scholar
Żółkoś, K. & Markowski, R. (2006) Pressure of the grey heron breeding colony (Ardea cinerea) on the phytocoenosis of lowland acidophilous beech forest in the ‘Czapliniec w Wierzysku’ reserve (Kaszubskie Lake District). Biodiversity: Research and Conservation 3–4: 337339.Google Scholar
Żółkoś, K. & Meissner, W. (2008) The effect of Grey Heron (Ardea cinerea L.) colony on the surrounding vegetation and the biometrical features of three undergrowth species. Polish Journal of Ecology 58: 6574.Google Scholar
Żółkoś, K. & Meissner, W. (2010) Influence of cormorant Phalacrocorax carbo colony on biometrical parameters of three-nerved sandwort Moehringia trinervia (Caryophyllaceae) leaves and seeds. Ekológia (Bratislava) 29: 5564.Google Scholar
Żółkoś, K., Meissner, W., Kalisiński, M., Górska, E., Melin, M., Ibron, I. & Wysocki, D. (2010) Liczebność i rozmieszczenie kolonii czapli siwej Ardea cinerea w północnej Polsce. Ornis Polonica 51: 3042.Google Scholar
Żółkoś, K., Meissner, W., Olszewski, T. S. & Remisiewicz, M. (2013) Changes in khasi pine (Pinus kesiya Royle ex Gordon) tree stands affected by dimorphic egret Egretta dimorpha colony at Madagascar. African Journal of Ecology 51: 319324.Google Scholar