Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T15:56:02.189Z Has data issue: false hasContentIssue false

Challenging the lichen concept: Turgidosculum ulvae (Verrucariaceae) represents an independent photobiont shift to a multicellular blade-like alga

Published online by Cambridge University Press:  08 May 2018

Sergio PÉREZ-ORTEGA
Affiliation:
Real Jardín Botánico (CSIC), C/ Claudio Moyano 1, E-28014 Madrid, Spain. Email: [email protected]
Kathy Ann MILLER
Affiliation:
Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building #2465, Berkeley, California 94720-2465, USA
Asunción DE LOS RÍOS
Affiliation:
Department of Biogeochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales (CSIC), C/ Serrano 115-dpdo, E-28006 Madrid, Spain

Abstract

Some definitions of the term ‘lichen’ have often emphasized the role of the mycobiont as exhabitant in the symbiosis. Mastodia tessellata and Turgidosculum ulvae, both forming lichen-like associations with foliose algae, have traditionally defied that definition. In this study, we delve into the poorly known association of T. ulvae with Blidingia minima. Using four molecular markers (nrLSU, nrSSU, RPB1, mtSSU) we show that T. ulvae is a member of the family Verrucariaceae, closely related to the marine species Verrucaria ditmarsica. The presence of bitunicate asci and single-cell ascospores is confirmed. Our analysis of a fragment of the rbcL marker demonstrates that the photosynthetic partner belongs to B. minima, although relationships within this taxon remain unclear. Transmission electron microscopy allowed us to illustrate how T. ulvae interacts with Blidingia cells, and how haustoria in that species differ from those previously investigated in other marine lichen-forming fungi.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadjian, V. (1982) Algal/fungal symbioses. Progress in Phycological Research 1: 179233.Google Scholar
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540552.Google Scholar
Cubit, J. D. (1975) Interactions of seasonally changing physical factors and grazing affecting high intertidal communities on a rocky shore. Ph.D. thesis, University of Oregon.Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google Scholar
de los Ríos, A. & Ascaso, C. (2002) Preparative techniques for transmission electron microscopy and confocal laser scanning microscopy of lichens. In Protocols in Lichenology: Culturing, Biochemistry, Ecophysiology and Use in Biomonitoring (I. Kranner, R. P. Beckett & A. K. Varma, eds): 87117. Berlin: Springer.Google Scholar
Erichsen, C. F. E. (1937) Weitere Beiträge zur Flechtenflora Schleswig-Holsteins und des Gebiets der Unterelbe. Schriften des Naturwissenschaftlichen Vereins für Schleswig-Holstein 22: 89116.Google Scholar
Garrido-Benavent, I., Pérez-Ortega, S. & de los Ríos, A. (2017 a) From Alaska to Antarctica: species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus Mastodia tessellata . Molecular Phylogenetics and Evolution 107: 117131.Google Scholar
Garrido‐Benavent, I., de los Ríos, A., Fernández‐Mendoza, F. & Pérez‐Ortega, S. (2017 b) No need for stepping stones: direct, joint dispersal of the lichen‐forming fungus Mastodia tessellata (Ascomycota) and its photobiont explains their bipolar distribution. Journal of Biogeography. DOI: 10.1111/jbi.13105.Google Scholar
Grube, M. (1999) Epifluorescence studies of the ascus in Verrucariales (lichenized Ascomycotina). Nova Hedwigia 68: 241249.Google Scholar
Grube, M. & Hawksworth, D. L. (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycological Research 111: 11161132.Google Scholar
Gueidan, C., Roux, C. & Lutzoni, F. (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycological Research 111: 11451168.Google Scholar
Gueidan, C., Savić, S., Thüs, H., Roux, C., Keller, C., Tibell, L., Prieto, M., Heiðmarsson, S., Breuss, O., Orange, A. et al. (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58: 184208.Google Scholar
Gueidan, C., Thüs, H. & Pérez-Ortega, S. (2011) Phylogenetic position of the brown algae-associated lichenized fungus Verrucaria tavaresiae (Verrucariaceae). Bryologist 114: 563569.Google Scholar
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.Google Scholar
Hawksworth, D. L. (1988) The variety of fungal‐algal symbioses, their evolutionary significance, and the nature of lichens. Botanical Journal of the Linnean Society 96: 320.Google Scholar
Hawksworth, D. L. & Honegger, R. (1994) The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In Plant Galls: Organisms, Interactions, Populations (M. A. J. Williams, ed.): 7798. Oxford: Clarendon Press.Google Scholar
Honegger, H. (2009) Lichen-forming fungi and their photobionts. In Plant Relationships. The Mycota V, 2nd edn (H. Deising, ed.): 307333. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Jaklitsch, W., Baral, H. O., Lücking, R., Lumbsch, H. T. & Frey, W. (2016) Syllabus of Plant Families – A. Engler’s Syllabus der Pflanzenfamilien. Part 1/2 Ascomycota. Stuttgart: Borntraeger Science Publishers.Google Scholar
Jones, E. G., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T. & Pang, K. L. (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Diversity 73: 172.Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066.Google Scholar
Kauff, F. & Lutzoni, F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138156.Google Scholar
Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. (2008) Dictionary of the Fungi, 10th edn. Wallingford: CAB International.Google Scholar
Kohlmeyer, J. & Kohlmeyer, E. (1972) A new genus of marine ascomycetes on Ulva vexata Setch. et Gard. Botanische Jahrbücher für Systematik Pflanzengeschichte und Pflanzengeographie 92: 429432.Google Scholar
Kohlmeyer, J. & Kohlmeyer, E. (2013) Marine Mycology: the Higher Fungi. New York: Academic Press.Google Scholar
Kohlmeyer, J., Hawksworth, D. L. & Volkmann-Kohlmeyer, B. (2004) Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae . Mycological Progress 3: 5156.CrossRefGoogle Scholar
Lücking, R., Hodkinson, B. P. & Leavitt, S. D. (2016) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. Bryologist 119: 361416.CrossRefGoogle Scholar
Lücking, R., Hodkinson, B. P. & Leavitt, S. D. (2017) Corrections and amendments to the 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota. Bryologist 120: 5869.Google Scholar
Manhart, J. R. (1994) Phylogenetic analysis of green plant rbcL sequences. Molecular Phylogenetics and Evolution 3: 114127.Google Scholar
Matheny, P. B., Liu, Y. J., Ammirati, J. F. & Hall, B. D. (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany 89: 688698.CrossRefGoogle ScholarPubMed
Ménard, T. & Roux, C. (1995) Placopyrenium bucekii et remarques sur les Verrucariaceae (Verrucariales, Lichenes). Mycotaxon 53: 129159.Google Scholar
Moe, R. (1997) Verrucaria tavaresiae sp. nov., a marine lichen with a brown algal photobiont. Bulletin of the California Lichen Society 4: 711.Google Scholar
Moniz, M. B., Guiry, M. D. & Rindi, F. (2014) tufA phylogeny and species boundaries in the green algal order Prasiolales (Trebouxiophyceae, Chlorophyta). Phycologia 53: 396406.Google Scholar
Muggia, L., Gueidan, C. & Grube, M. (2010) Phylogenetic placement of some morphologically unusual members of Verrucariales . Mycologia 102: 835846.Google Scholar
Norris, J. N. (1971) Observations on the genus Blidingia (Chlorophyta) in California. Journal of Phycology 7: 145149.Google Scholar
Parra, O. & Redón, J. (1977) Aislamiento de Heterococcus caespitosus Vischer bicobionte de Verrucaria maura Walhlenb. Boletín de la Sociedad Biológica de Concepción 51: 219224.Google Scholar
Paz-Bermúdez, G., López de Silanes, M. E. & Carballal, R. (2000) Líquenes saxícolas y terrícolas y hongos liquenícolas interesantes de la costa de Galicia (NW España). Candollea 55: 137152.Google Scholar
Pérez-Ortega, S., de los Ríos, A., Crespo, A. & Sancho, L. G. (2010) Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). American Journal of Botany 97: 738752.Google Scholar
Reed, M. (1902) Two new ascomycetous fungi parasitic on marine algae. University of California Publications in Botany 7: 279324.Google Scholar
Rehner, S. A. & Samuels, G. J. (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625634.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Roux, C. et coll. (2014) Catalogue des Lichens et Champignons Lichénicoles de France Métropolitaine. Fougères: Henry Des Abbayes.Google Scholar
Sanders, W. B., Moe, R. L. & Ascaso, C. (2004) The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): thallus organization and symbiont interaction. American Journal of Botany 91: 511522.Google Scholar
Savić, S., Tibell, L., Gueidan, C. & Lutzoni, F. (2008) Molecular phylogeny and systematics of Polyblastia (Verrucariaceae, Eurotiomycetes) and allied genera. Mycological Research 112: 13071318.Google Scholar
Schatz, S. (1980) Taxonomic revision of two Pyrenomycetes associated with littoral-marine green algae. Mycologia 72: 110117.Google Scholar
Scheu, S. & Simmerling, F. (2004) Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia 139: 347353.Google Scholar
Setchell, W. A. & Gardner, N. L. (1920) The marine algae of the Pacific coast of North America. Part II. Chlorophyceae. University of California Publications in Botany 8: 139374.Google Scholar
Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolseley, P. A. (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758771.Google Scholar
Stiller, J. W. & Hall, B. D. (1997) The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences of the United States of America 94: 45204525.Google Scholar
Taylor, R. M. (1982) Marine flora and fauna of the Northeastern United States. Lichens (Ascomycetes) of the intertidal region. NOAA Technical Report NMFS Circular 446. Seattle: US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.Google Scholar
Thüs, H. & Schultz, M. (2008) Freshwater Flora of Central Europe, Vol. 21/1: Fungi, Part 1: Lichens. Heidelberg: Spektrum.Google Scholar
Thüs, H., Muggia, L., Pérez-Ortega, S., Favero-Longo, S. E., Joneson, S., O’Brien, H., Nelsen, M. P., Duque-Thüs, R., Grube, M., Friedl, T., et al. (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology 46: 399415.Google Scholar
Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7: e40863.Google Scholar
Verbruggen, H., Ashworth, M., LoDuca, S. T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F. W., Littler, D. S., Littler, M. M., Leliaert, F., et al. (2009) A multi-locus time-calibrated phylogeny of the siphonous green algae. Molecular Phylogenetics and Evolution 50: 642653.Google Scholar
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.Google Scholar
Werth, S., Reynisdóttir, S., Gudmundsson, H. & Andrésson, Ó. S. (2016) A fast and inexpensive high-throughput protocol for isolating high molecular weight genomic DNA from lichens. Herzogia 29: 610616.Google Scholar
Zahlbruckner, A. (1907) Lichenes (Flechten). In Natürliche Pflanzenfamilien. Teil 1, Abt. 1. (A. Engler & K. Prantl, eds): 49249. Leipzig: W. Engelmann.Google Scholar
Zeitler, I. (1954) Untersuchungen uber die Morphologie, Entwicklungsgeschichte und Systematik von Flechtengonidien. Österreichische Botanische Zeitschrift 101: 453487.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.Google Scholar