Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T15:58:37.388Z Has data issue: false hasContentIssue false

Molecular data favours a monogeneric Peltulaceae (Lichinomycetes)

Published online by Cambridge University Press:  08 May 2018

Frank KAUFF
Affiliation:
Justus-Liebig-Universität, Medizinische Klinik IV, Hämatologie, Klinikstrasse 36, 35392 Giessen, Germany
Alexandra BACHRAN
Affiliation:
Wesendonckstr. 2, 53115 Bonn, Germany
Matthias SCHULTZ
Affiliation:
Herbarium Hamburgense, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
Valérie HOFSTETTER
Affiliation:
Agroscope, Strategic Research Division Plant Protection, Mycology and Biotechnology, Route de Duiller 60, P. O. Box 1012, 1260 Nyon, Switzerland
François LUTZONI
Affiliation:
Department of Biology, Duke University, P. O. Box 90338, Durham, NC 27708, USA
Burkhard BÜDEL*
Affiliation:
Department of Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße, 67653 Kaiserslautern, Germany.
*
(corresponding author): Email: [email protected]

Abstract

The family Peltulaceae is currently composed of the three genera Peltula, Phyllopeltula and Neoheppia. The last two genera, both with two species, are distinguished from Peltula only by a small number of morphological characters. The morphology of the genus Peltula varies from peltate-umbilicate thalli to squamulose-semifruticose or squamulose-compound types, as well as subfoliose-compound and crustose types. All types have an upper epinecral layer and possess medullary cavities of various sizes; a lower cortex is normally present but is usually not developed in the subfoliose and crustose types. The genera Neoheppia and Phyllopeltula differ from the common Peltula morphology by crustose-areolate and subfoliose-compound thalli, respectively. Both Neoheppia and Phyllopeltula are additionally characterized by the absence of medullary cavities and lower cortices. To investigate the phylogenetic validity of Phyllopeltula and Neoheppia, we sequenced six loci from representatives of these two genera together with 37 species from Peltula. Despite the relatively high amount of conflict among loci, the results clearly indicate that both Phyllopeltula and Neoheppia are not monophyletic, and are nested within the genus Peltula. Consequently, we subsumed species of these two genera within the genus Peltula.

Type
Articles
Copyright
© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 33893402.Google Scholar
Aptroot, A. & Schumm, F. (2010) Chimeras occur on the pantropical Lichinomycete Phyllopeltula corticola . Lichenologist 42: 307310.Google Scholar
Becker, U. (2002) Flechtenflora und Flechtenvegetation tropischer Inselberge am Beispiel Zimbabwes. Ph.D. thesis, University of Cologne.Google Scholar
Bubrick, P. & Galun, M. (1984) Cyanobiont diversity in the Lichinaceae and Heppiaceae . Lichenologist 16: 279287.Google Scholar
Büdel, B. (1987 a) Zur Biologie und Systematik der Flechtengattungen Heppia und Peltula im südlichen Afrika. Bibliotheca Lichenologica 23: 1105.Google Scholar
Büdel, B. (1987 b) Taxonomy and biology of the lichen genus Peltula Nyl. Bibliotheca Lichenologica 25: 209217.Google Scholar
Büdel, B. (1990) Anatomical adaptations to the semiarid/arid environment in the lichen genus Peltula. Bibliotheca Lichenologica 38: 4761.Google Scholar
Büdel, B. (1995) The lichen genus Neoheppia . Mycotaxon 54: 137145.Google Scholar
Büdel, B. & Elix, J. A. (1997) Peltula langei Büdel et Elix spec. nov from Australia, with remarks on its chemistry and the ascoma of Peltula clavata (Krempelh.) Wetm. Bibliotheca Lichenologica 67: 39.Google Scholar
Büdel, B. & Lange, O. L. (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogamic Botany 4: 262269.Google Scholar
Büdel, B., Becker, U., Follmann, G. & Sterflinger, K. (2000) Algae, fungi, and lichens. Ecological Studies 146: 6990.Google Scholar
Donner, A. (2013) The case of Chroococcidiopsis: new phylogenetic and morphological insights into ecologically important cyanobacteria. Ph.D. thesis, University of Kaiserslautern. URL: https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3572.Google Scholar
Egea, J. M. (1989) Los géneros Heppia y Peltula (Líquenes) en Europa Occidental y Norte de Africa. Bibliotheca Lichenologica 31: 1122.Google Scholar
Ekman, S., Wedin, M., Lindblom, L. & Jørgensen, P. M. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). Lichenologist 46: 627656.Google Scholar
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Journal of Molecular Evolution 39: 783791.Google Scholar
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 9598.Google Scholar
Hofstetter, V., Clémençon, H., Vilgalys, R. & Moncalvo, J. M. (2002) Phylogenetic analyses of the Lyophylleae (Agaricales, Basidiomycetes) based on nuclear and mitochondrial rDNA sequences. Mycological Research 106: 10431059.Google Scholar
Ihlen, P. G. & Ekman, S. (2002) Outline of phylogeny and character evolution in Rhizocarpon (Rhizocarpaceae, lichenized Ascomycota) based on nuclear ITS and mitochondrial SSU ribosomal DNA sequences. Biological Journal of the Linnean Society 77: 535546.Google Scholar
Kalb, K. (2001) New or otherwise interesting lichens. Bibliotheca Lichenologica 78: 141176.Google Scholar
Karplus, K., Barrett, C. & Hughey, R. (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14: 846856.Google Scholar
Kauff, F. & Lutzoni, F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138156.Google Scholar
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628651.Google Scholar
Makryi, T. V. (2016) Peltula pannarioides and P. rosulata (Peltulaceae), new lichen species from Baikal Siberia. Novosti Sistematiki Nizshikh Rastenii 50: 231242.Google Scholar
Marques, J., Schultz, M. & Paz-Bermúdez, G. (2013) A Peltula Nyl. diversity hotspot in north-east Portugal, with one species new to science and three species new to mainland Europe. Lichenologist 45: 483496.Google Scholar
Mason-Gamer, R. & Kellogg, E. (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 524545.Google Scholar
Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.Google Scholar
Otálora, M. A. G., Aragón, G., Martínez, I. & Wedin, M. (2013) Cardinal characters on a slippery slope – a re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). Molecular and Phylogenetic Evolution 68: 185198.Google Scholar
Otálora, M. A. G., Jørgensen, P. M. & Wedin, M. (2014) A revised generic classification of the jelly lichens, Collemataceae. Fungal Diversity 64: 275293.Google Scholar
Printzen, C. (2010) Lichen systematics: the role of morphological and molecular data to reconstruct phylogenetic relationships. Progress in Botany 71: 233275.Google Scholar
Purvis, O. W. (1997) The species concept in lichens. In Species: The Unit of Biodiversity (M. F. Claridge, H. A. Dawah & M. R. Wilson, eds): 109134. London: Chapman and Hall.Google Scholar
Rodriguez, F., Oliver, J. L., Marin, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.Google Scholar
Schultz, M., Arendholz, W.-R. & Büdel, B. (2001) Origin and evolution of the lichenized Ascomycete order Lichinales: monophyly and systematic relationships inferred from ascus, fruiting body and SSU rDNA evolution. Plant Biology 3: 116123.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758771.CrossRefGoogle ScholarPubMed
Wedin, M., Wiklund, E., Jørgensen, P. M. & Ekman, S. (2009) Slippery when wet: phylogeny and character evolution in the gelatinous cyanobacterial lichens (Peltigerales, Ascomycetes). Molecular Phylogenetics and Evolution 53: 862871.Google Scholar
Wetmore, C. M. (1970) The lichen family Heppiaceae in North America. Annals of the Missouri Botanical Garden 57: 158209.Google Scholar
Zahlbruckner, A. (1909) Lichenes (Flechten). Denkschriften der Kaiserlichen Akademie der Wissenschaften, Wien . Mathematisch-naturwissenschaftliche Klasse 83: 87211.Google Scholar
Supplementary material: Image

Kauff et al. supplementary material

Kauff et al. supplementary material 1

Download Kauff et al. supplementary material(Image)
Image 1.1 MB
Supplementary material: Image

Kauff et al. supplementary material

Kauff et al. supplementary material 2

Download Kauff et al. supplementary material(Image)
Image 1.2 MB
Supplementary material: Image

Kauff et al. supplementary material

Kauff et al. supplementary material 3

Download Kauff et al. supplementary material(Image)
Image 1.2 MB
Supplementary material: Image

Kauff et al. supplementary material

Kauff et al. supplementary material 4

Download Kauff et al. supplementary material(Image)
Image 1.1 MB
Supplementary material: Image

Kauff et al. supplementary material

Kauff et al. supplementary material 5

Download Kauff et al. supplementary material(Image)
Image 1.2 MB
Supplementary material: Image

Kauff et al. supplementary material

Kauff et al. supplementary material 6

Download Kauff et al. supplementary material(Image)
Image 1.2 MB
Supplementary material: File

Kauff et al. supplementary material

Kauff et al. supplementary material 7

Download Kauff et al. supplementary material(File)
File 13.3 KB