Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T12:12:32.620Z Has data issue: false hasContentIssue false

Genetic variability in the Physconia muscigena group (Physciaceae, Ascomycota) in the Northern Hemisphere

Published online by Cambridge University Press:  29 July 2020

Jakub Starosta
Affiliation:
Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
David Svoboda*
Affiliation:
Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
*
Author for correspondence: David Svoboda. E-mail: [email protected]

Abstract

The principal goal of our study was to test whether ecologically and chemically different populations of lichens in the Physconia muscigena group belong to a single, or multiple, species. We used sequence data from three markers (ITS rDNA, mtSSU rDNA and TEF1-α) for the reconstruction of phylogenetic trees based on a sampling of mostly European and Canadian populations of P. muscigena (Ach.) Poelt, P. muscigena var. bayeri (Nádv.) Poelt and P. isidiomuscigena Essl. In addition, we sought any possible geographical or ecological trends among chemotypes and haplotypes. Results show that: 1) sequence data of ITS rDNA and TEF1-α show large genetic variation in the Physconia muscigena group, which does not correlate with geographical distribution or thallus chemistry; 2) Physconia muscigena var. bayeri and P. isidiomuscigena appear undifferentiated with P. muscigena in our phylogenetic trees, and the three species cannot be distinguished on the basis of ITS rDNA, mtSSU rDNA and TEF1-α sequences. We therefore synonymized Physconia muscigena var. bayeri with P. muscigena and we recombine P. isidiomuscigena as a variety of P. muscigena.

Type
Standard Papers
Copyright
Copyright © British Lichen Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, MP, Dobrysh, AA, Golubkova, NS, Himebrant, DE, Kataeva, OA, Kotlov, YV, Makarova, II, Titov, AN, Tolpysheva, TY, Urbanavichene, IN, et al. (2008) Opredělitěl Lišajnikov Rossii, Tom 10. St. Petersburg: Nauka Sankt-Petersburg.Google Scholar
Articus, K, Mattsson, JE, Tibell, L, Grube, M and Wedin, M (2002) Ribosomal DNA and β-tubulin data do not support the separation of the lichens Usnea florida and U. subfloridana as distinct species. Mycological Research 106, 412418.CrossRefGoogle Scholar
Bouckaert, RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26, 13721373.CrossRefGoogle ScholarPubMed
Brodo, I, Sharnoff, SD and Sharnoff, S (2001) Lichens of North America. New Haven and London: Yale University Press.Google Scholar
Carbone, I and Kohn, LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91, 553556.CrossRefGoogle Scholar
Chen, JB and Hu, GR (2003) The lichen family Physciaceae (Ascomycota) in China V. The genus Physconia. Mycotaxon 86, 185194.Google Scholar
Cubero, OF, Crespo, A, Esslinger, TL and Lumbsch, HT (2004) Molecular phylogeny of the genus Physconia (Ascomycota, Lecanorales) inferred from a Bayesian analysis of nuclear ITS rDNA sequences. Mycological Research 108, 498505.CrossRefGoogle ScholarPubMed
Darriba, D, Taboada, GL, Doallo, R and Posada, D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Esslinger, LT (2000) A key for the lichen genus Physconia in California, with descriptions for three new species occurring within the state. Bulletin of the California Lichen Society 7, 16.Google Scholar
Esslinger, LT (2002) Genus Physconia. In Nash, TH III, Ryan, BD, Gries, C and Bungartz, F (eds), Lichen Flora of the Greater Sonoran Desert Region, Vol. I. Tempe, Arizona: Lichens Unlimited, Arizona State University, pp. 373383.Google Scholar
Fernández-Mendoza, F, Domaschke, S, García, MA, Jordan, P, Martín, MP and Printzen, C (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Molecular Ecology 20, 12081232.CrossRefGoogle ScholarPubMed
Flakus, A, Etayo, J, Schiefelbein, U, Ahti, T, Jabłońska, A, Oset, M, Bach, K, Flakus, P and Kukwa, M (2012) Contribution to the knowledge of the lichen biota of Bolivia 4. Polish Botanical Journal 57, 427461.Google Scholar
Galloway, DJ and Aptroot, A (1995) Bipolar lichens: a review. Cryptogamic Botany 5, 184191.Google Scholar
Gardes, M and Bruns, TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113118.CrossRefGoogle ScholarPubMed
Goffinet, B, Miadlikowska, J and Goward, T (2003) Phylogenetic inferences based on nrDNA sequences support five morphospecies within the Peltigera didactyla complex (lichenized Ascomycota). Bryologist 106, 349364.CrossRefGoogle Scholar
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Kumar, S, Stecher, G and Tamura, K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 18701874.CrossRefGoogle ScholarPubMed
Leigh, JW and Bryant, D (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 11101116.CrossRefGoogle Scholar
Lohtander, K, Urbanavichus, G and Ahti, T (2007) The phylogenetic position of two new species of Physconia (lichenized Ascomycetes) from Russia. Bibliotheca Lichenologica 96, 175184.Google Scholar
Messuti, MI, Passo, A, Scervino, JM and Vidal-Russell, R (2016) The species pair Pseudocyphellaria pilosella-piloselloides (lichenized Ascomycota: Lobariaceae) is a single species. Lichenologist 48, 141146.CrossRefGoogle Scholar
Moberg, R (1977) The lichen genus Physcia and allied genera in Fennoscandia. Symbolae Botanicae Upsalienses 22(1), 1108.Google Scholar
Moberg, R (1987) The genera Hyperphyscia and Physconia in East Africa. Nordic Journal of Botany 7, 719728.CrossRefGoogle Scholar
Moberg, R (2002) Genus Physconia. In Ahti, T, Jørgensen, P, Kristinsson, H, Moberg, R, Søchting, U and Thor, G (eds), Nordic Lichen Flora Vol. 2: Physciaceae. Uddevalla: Nordic Lichen Society, pp. 3841.Google Scholar
Myllys, L, Lohtander, K and Tehler, A (2001) β-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93, 335343.Google Scholar
Nádvorník, J (1947) Physciaceae Tchécoslovaques. Studia Botanica Čechoslovaca 8, 69124.Google Scholar
Núñez-Zapata, J, Cubas, P, Hawksworth, DL and Crespo, A (2015) Biogeography and genetic structure in populations of a widespread lichen (Parmelina tiliacea, Parmeliaceae, Ascomycota). PLoS ONE 10, e0126981.CrossRefGoogle Scholar
Orange, A, James, PW and White, FJ (2010) Microchemical Methods for the Identification of Lichens. 2nd edn. London: British Lichen Society.Google Scholar
Otte, V, Esslinger, TL and Litterski, B (2002) Biogeographical research on European species of the lichen genus Physconia. Journal of Biogeography 29, 11251141.CrossRefGoogle Scholar
Poelt, J (1957) Mitteleuropäische Flechten IV. Mitteilungen der Botanischen Staatssammlung München 2, 273283.Google Scholar
Poelt, J (1965) Zur Systematik der Flechtenfamilie Physciaceae. Nova Hedwigia 9, 2132.Google Scholar
Printzen, C, Lumbsch, HT, Schmitt, I and Feige, G (1999) A study on the genetic variability of Biatora helvola using RAPD markers. Lichenologist 31, 491499.CrossRefGoogle Scholar
Printzen, C, Ekman, S and Tønsberg, T (2003) Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Molecular Ecology 12, 14731486.CrossRefGoogle Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, D and Darling, A (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Smith, CW, Aptroot, A, Coppins, BJ, Fletcher, A, Gilbert, OL and Wolseley, PA (eds) (2009) The Lichens of Great Britain and Ireland. London: British Lichen Society.Google Scholar
Sork, VL and Werth, S (2014) Phylogeography of Ramalina menziesii, a widely distributed lichen-forming fungus in western North America. Molecular Ecology 23, 23262339.CrossRefGoogle ScholarPubMed
Swofford, DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4.0b10. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tehler, A (1982) The species pair concept in lichenology. Taxon 31, 708714.CrossRefGoogle Scholar
Thomson, JW (1963) The lichen genus Physcia in North America. Nova Hedwigia 7, 1172.Google Scholar
Türk, R and Obermayer, W (2006) The distribution of the species of the genera Physcia and Physconia (Physciaceae) in Austria. In Lackovičová, A, Guttová, A, Lisická, E and Lizoň, P (eds), Central European Lichens – Diversity and Threat. Ithaca: Mycotaxon Ltd, pp. 119151.Google Scholar
Velmala, S, Myllys, L, Halonen, P, Goward, T and Ahti, T (2009) Molecular data show that Bryoria fremontii and B. tortuosa (Parmeliaceae) are conspecific. Lichenologist 41, 231242.CrossRefGoogle Scholar
Werth, S and Sork, VL (2014) Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. American Journal of Botany 101, 11271140.CrossRefGoogle ScholarPubMed
White, TJ, Bruns, TD, Lee, SB and Taylor, JW (1990) Amplification and direct sequencing of fungal ribosomal DNA genes for phylogenetics. In Innis, MA, Gelfand, DH, Sninsky, JJ and White, TJ (eds), PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, pp. 315322.Google Scholar
Zoller, S, Lutzoni, F and Scheidegger, C (1999) Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Molecular Ecology 8, 20492059.CrossRefGoogle ScholarPubMed
Supplementary material: File

Starosta et al.

Supplementary Material

Download Starosta et al.(File)
File 421 KB