Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T15:39:36.032Z Has data issue: false hasContentIssue false

The elevation gradient of lichen species richness in Nepal

Published online by Cambridge University Press:  26 November 2009

Chitra Bahadur BANIYA
Affiliation:
Department of Biology, University of Bergen, Allégaten 41, P.O. Box 7803, N-5020 Bergen, Norway. Email: [email protected]
Torstein SOLHØY
Affiliation:
Department of Biology, University of Bergen, Allégaten 41, P.O. Box 7803, N-5020 Bergen, Norway. Email: [email protected]
Yngvar GAUSLAA
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
Michael W. PALMER
Affiliation:
Department of Botany, Oklahoma State University, 104 LSE Stillwater OK 74078USA405-744-7717.

Abstract

This study of elevation gradients of lichen species richness in Nepal aimed to compare distribution patterns of different life-forms, substratum affinities, photobiont types, and Nepalese endemism. Distribution patterns of lichens were compared with elevational patterns shown by a wide range of taxonomic groups of plants along the Nepalese Himalayan elevational gradient between 200–7400m. We used published data on the elevation records of 525 Nepalese lichen species to interpolate presence between the maximum and minimum recorded elevations, thereby giving estimates of lichen species richness at each 100-m elevational band. The observed patterns were compared with previously published patterns for other taxonomic groups. The total number of lichens as well as the number of endemic species (55 spp.) showed humped relationships with elevation. Their highest richness was observed between 3100–3400 and 4000–4100m, respectively. Almost 33% of the total lichens and 53% of the endemic species occurred above the treeline (>4300m). Non-endemic richness had the same response as the total richness. All growth forms showed a unimodal relationship of richness with elevation, with crustose lichens having a peak at higher elevations (4100–4200m) than fruticose and foliose lichens. Algal and cyanobacterial lichen richness, as well as corticolous lichen richness, all exhibited unimodal patterns, whereas saxicolous and terricolous lichen richness exhibited slightly bimodal relationships with elevation. The highest lichen richness at mid altitudes concurred with the highest diversity of ecological niches in terms of spatial heterogeneity in rainfall, temperature, cloud formation, as well as high phorophyte abundance and diversity implying large variation in bark roughness, moisture retention capacity, and pH. The slightly bimodal distributions of saxicolous and terricolous lichens were depressed at the elevational maximum of corticolous lichens.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbayes, H. D. (1974) Cladonia du Nepal. In Khumbu Himal 6 (Hellmich, W. & Poelt, J., eds): 111116. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Acharya, K. P. (2008) Orchid species richness along a Himalayan elevation gradient. M. Sc. thesis, Bergen University.Google Scholar
Aptroot, A. & Bungartz, F. (2007) The lichen genus Ramalina on the Galapagos. Lichenologist 39: 519542.CrossRefGoogle Scholar
Awasthi, G. (1986) Lichen genus Usnea in India. Journal of the Hattori Botanical Laboratory 61: 333421.Google Scholar
Awasthi, D. D. (1991) A key to the microlichens of India, Nepal and Sri Lanka. Bibliotheca Lichenologica 40: 1337.Google Scholar
Awasthi, D. D. (2007) A Compendium of the Macrolichens from India, Nepal and Sri Lanka. Dehra Dun: Bishen Singh & Mahendra Pal Singh.Google Scholar
Awasthi, D. D. & Mathur, R. (1987) Species of the lichen genera Bacidia, Badimia, Fellhanera and Mycobilimbia from India. Proceedings of Indian Academy of Sciences, Bangalore. 97: 481503.CrossRefGoogle Scholar
Baniya, C. B. (1996) Floristic composition of lichens of Sikles (Kaski) and Shivapuri (Kathmandu) and their ecology. M. Sc. thesis, Tribhuvan University, Kathmandu, Nepal.Google Scholar
Bhattarai, K. R. & Vetaas, O. R. (2003) Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography 12: 327340.CrossRefGoogle Scholar
Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. (2004) Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography 31: 389400.CrossRefGoogle Scholar
Bruun, H. H., Moen, J., Virtanen, R., Grytnes, J. A., Oksanen, L. & Angerbjörn, A. (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science 17: 3746.CrossRefGoogle Scholar
Bystrek, J. L. (1969) Die Gattung Alectoria. In Khumbu Himal 6 (Hellmich, W. & Poelt, J., eds): 1724. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Campbell, J. & Coxson, D. S. (2001) Canopy microclimate and arboreal lichen loading in subalpine spruce-fir forest. Canadian Journal of Botany 79: 537555.CrossRefGoogle Scholar
Cox, C. B. & Moore, P. D. (2000) Biogeography: an Ecological and Evolutionary Approach. London: Blackwells.Google Scholar
Crawley, M. J. (2006) Statistics: an Introduction using R. London: John Wiley & Sons, Ltd.Google Scholar
Dobremez, J. F. (1976) Le Nepal: Écologie et Biogeographie. Paris: Centre National de la Recherche Scientifique.Google Scholar
Dobremez, J. F. & Jest, C. (1969) Carte Écologique de la Region Annapurna Dhaulagiri. Paris: Centre National de la Recherche Scientifque.Google Scholar
Esslinger, T. L. & Poelt, J. (1991) Parmelia masonii, a new lichen species (Ascomycota) from the Himalayas. Bryologist 94: 203206.CrossRefGoogle Scholar
Gauslaa, Y., Palmqvist, K., Solhaug, K. A., Holien, H., Hilmo, O., Nybakken, L., Myhre, L. C. & Ohlson, M. (2007) Growth of epiphytic old forest lichens across climatic and successional gradients. Canadian Journal of Forest Research 37: 18321845.CrossRefGoogle Scholar
Gauslaa, Y., Lie, M. & Ohlson, M. (2008) Epiphytic lichen biomass in a boreal Norway spruce forest. Lichenologist 40: 257266.CrossRefGoogle Scholar
Gauslaa, Y., Palmqvist, K., Solhaug, K. A., Hilmo, O., Holien, H., Nybakken, L. & Ohlson, M. (2009) Size dependent growth in two old-growth associated macrolichen species. New Phytologist 18: 683692.CrossRefGoogle Scholar
Goward, T. (1998) Observations on the ecology of the lichen genus Bryoria in high elevation conifer forests. Canadian Field Naturalist 112: 496501.CrossRefGoogle Scholar
Grau, O., Grytnes, J.-A. & Birks, H. J. B. (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography 34: 19071915.CrossRefGoogle Scholar
Grime, J. P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 11: 11691194.CrossRefGoogle Scholar
Grytnes, J. A., Heegaard, E. & Ihlen, P. G. (2006) Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecologica 29: 241246.CrossRefGoogle Scholar
Grytnes, J. A. & Vetaas, O. R. (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. American Naturalist 159: 294304.CrossRefGoogle ScholarPubMed
Hagen, T. (1969) Report on the Geological Survey of Nepal: Preliminary Reconnaissance. Zurich: Orell Füssli Arts Graphiques.Google Scholar
Hastie, T. J. & Tibshirani, R. J. (1990) Generalised Additive Models. London: Chapman & Hall.Google Scholar
Heegaard, E. (2004) Trends in aquatic macrophyte species turnover in Northern Ireland – which factors determine the spatial distribution of local species turnover? Global Ecology and Biogeography 13: 397408.CrossRefGoogle Scholar
Hellmich, W. & Poelt, J. (eds) (1977). Khumbu Himal 6. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Hunter, M. L. & Yonzon, P. (1993) Altitudinal distributions of birds, mammals, people, forests, and parks in Nepal. Conservation Biology 7: 420423.CrossRefGoogle Scholar
Jahns, H. M. & Seelen, E. J. R. (1974) Baeomyces-Funde aus dem Himalaya. In Khumbu Himal 6 (Hellmich, W., & Poelt, J., eds): 101108. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Jonsson, A. V., Moen, J. & Palmqvist, K. (2008) Predicting lichen hydration using biophysical models. Oecologia 156: 259273.CrossRefGoogle ScholarPubMed
Jørgensen, P. M. (2001) The lichen genus Erioderma (Pannariaceae) in China and Japan. Annales Botanici Fennici 38: 259264.Google Scholar
Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. & Hestmark, G. (1996) Cold resistance and metabolic activity of lichens below 0°C. In Life Sciences: Space and Mars Recent Results 18: 119128. Oxford: Pergamon Press Ltd.Google Scholar
Kessler, M. (2000) Altitudinal zonation of Andean cryptogam communities. Journal of Biogeography 27: 275282.CrossRefGoogle Scholar
Körner, C. (2007) The use of ‘altitude’ in ecological research. Trends in Ecology and Evolution 22: 569574.CrossRefGoogle ScholarPubMed
Kurokawa, S. (1974) Anaptychia of the Nepal-Himalaya. In Khumbu Himal 6 (Hellmich, W., & Poelt, J., eds): 109110. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Kuusinen, M. (1996) Epiphyte flora and diversity on basal trunks of six old-growth forest tree species in southern and middle boreal Finland. Lichenologist 28: 443463.CrossRefGoogle Scholar
Lamb, L. M. (1966) Die Gattung Stereocaulon. In Khumbu Himal 1 (Hellmich, W., ed): 349352. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Mattick, F. (1953) Lichenologisches Notizen. Berichte der Deutschen Botanischen Gesellschaft 66: 263276.Google Scholar
Miehe, G. (1982) Vegetationsgeographische Untersuchungen im Dhaulgiri und Annapurna Himalaya, Dissertationes Botanicæ. Journal Cramer, Vaduz 66: 66.Google Scholar
Miehe, G. (1989) Vegetation patterns in Mount Everest as influenced by monsoon and föhn. Vegetatio 79: 2132.CrossRefGoogle Scholar
Miehe, G. (1990) Langtang himal-flora und vegetation als klimazeiger und-zeugen im Himalaya. Ph. D. thesis, Universität Göttingen.Google Scholar
Mitchell, M. (1974) Die Gattung Leptogium sect. Mallotium im Himalaya. In Khumbu Himal 6 (Hellmich, W., & Poelt, J., eds): 121126. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Negi, H. (2000) On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya. Journal of Biosciences 25: 367378.CrossRefGoogle ScholarPubMed
Negi, H. (2003) Lichens: a valuable bioresource for environmental monitoring and sustainable development. Resonance 8: 5158.CrossRefGoogle Scholar
Pant, G. & Awasthi, D. D. (1989a) Caliciales from India and Nepal. Biovigyanam 15: 327.Google Scholar
Pant, G. & Awasthi, D. D. (1989b) Lichen genus Catillaria s. lat. in India. Proceedings of Indian Academy of Sciences (Plant Science). 99: 369384.CrossRefGoogle Scholar
Pinokiyo, A., Singh, K. P. & Singh, J. S. (2008) Diversity and distribution of lichens in relation to altitude within a protected biodiversity hotspot, north-east India. Lichenologist 40: 4762.CrossRefGoogle Scholar
Poelt, J. (1966 a) Die Gattung Ochrolechia. In Khumbu Himal 1 (Hellmich, W., ed): 251261. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Poelt, J. (1966 b) Die Lobaten Arten der Sammelgattung Lecanora, Lecanoraceae. In Khumbu Himal 3 (Hellmich, W., ed): 187202. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.CrossRefGoogle Scholar
Poelt, J. (1974) Die Gattungen Physcia, Physciopsis und Physconia. In Khumbu Himal 6 (Hellmich, W., & Poelt, J., eds): 5799. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Poelt, J. & Hinteregger, E. (1993) Beiträge zur Kenntnis der Flechtenflora des Himalaya. Bibliotheca Lichenologica 50: 1247.Google Scholar
Poelt, J. & Reddi, B. V. (1969) Candelaria und Candelariella. In Khumbu Himal 6 (Hellmich, W., & Poelt, J., eds): 116. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Qian, H., Fridley, J. D. & Palmer, M. W. (2007) The latitudinal gradient of species-area relationships for vascular plants of North America. American Naturalist 170: 690701.CrossRefGoogle ScholarPubMed
R Development Core Team (2008) R: A language and environment for statistical computing version 2.7.0.Google Scholar
Rose, F. (1976) Lichenological indicators of age and environmental continuity in woodlands. In Lichenology: Progress and Problems (Brown, D. H., Hawksworth, D. L & Bailey, R. H., eds): 279307. London: Academic Press.Google Scholar
Rosenzweig, M. L. M. L. (1995) Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schmidt, A. (1974) Chaenotheca und Coniocybe. In Khumbu Himal 6 (Hellmich, W., & Poelt, J., eds): 133143. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Schroeter, B., Green, T. G. A., Kappen, L. & Seppelt, R. D. (1994) Carbon dioxide exchange rate at subzero temperatures. Field measurements on Umbilicaria aprina in Antarctica. Cryptogamic Botany 4: 233241.Google Scholar
Sharma, L. R. (1995). Enumeration of Lichens of Nepal. Euroconsult, Biodiversity Profiles Project, Publication No. 3. Nepal Government, 1109.Google Scholar
Stainton, J. D. A. (1972) Forests of Nepal. London: John Murray Publisher, Ltd.Google Scholar
Stainton, A. (2001) Flowers of the Himalaya: a Supplement. Oxford: Oxford University Press.Google Scholar
Upreti, B. N. (1999) An overview of the stratigraphy and tectonics of the Nepal Himalaya. Journal of Asian Earth Sciences 17: 577606.CrossRefGoogle Scholar
Vetaas, O. R. & Grytnes, J. A. (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography 11: 291301.CrossRefGoogle Scholar
Vězda, A. & Poelt, J. (1975) Die Gattungen Dimerella und Pachyphiale. In Khumbu Himal 6 (Hellmich, W., & Poelt, J., eds): 127132. München: Universitätsverlag Wagner Ges. M. B. H. Innsbruck.Google Scholar
Vitikainen, O. (1986) Peltigera dolichospora, a new Himalayan-western Chinese lichen. Lichenologist 18: 387390.CrossRefGoogle Scholar
Whittaker, R. H. (1972) Evolution and measurement of species diversity. Taxon 21: 213251.CrossRefGoogle Scholar
Wolf, J. H. D. (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the Northern Andes. Annals of the Missouri Botanical Garden 80: 928960.CrossRefGoogle Scholar
Wolf, J. H. D. & Alejandro, F.-S. (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography 30: 16891707.CrossRefGoogle Scholar
Wolseley, P. A. & Aguirre-Hudson, B. (1997) The ecology and distribution of lichens in tropical deciduous and evergreen forests of northern Thailand. Journal of Biogeography 24: 327343.CrossRefGoogle Scholar
Yoda, K. (1967) A preliminary survey of the forest vegetation of eastern Nepal II. General description, structure and floristic composition of sample plots chosen from different vegetation zones. Journal of the College of Arts and Sciences, Chiba University National Science Series 5: 99140.Google Scholar