Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T23:48:42.614Z Has data issue: false hasContentIssue false

How Can Spin, Ply, and Knot Direction Contribute to Understanding the Quipu Code?

Published online by Cambridge University Press:  20 January 2017

Marcia Ascher*
Affiliation:
524 Highland Road, Ithaca, NY 14850 ([email protected])

Abstract

Essential to quipu analysis is identification of the logical structure of the quipu and the internal relationships of the data within that structure. The identification process relies on examining, in detail, the colors, placement, and spacing of the quipu cords, and the knot types and positions on the cords. Spin, ply, and knot directionality have recently become available for 59 otherwise well-described quipus. Here, I examine this additional information in the context of the logic of the quipus. Analysis shows that for these quipus, except for three in which the main cord differs from the other cords, spin and ply are uniform for all the cords on a quipu. For the large majority of the quipus (about 81 percent), knot directionality is also uniform throughout. The 19 percent for which knot directionality is mixed are presented and discussed individually. On them, knot directionality conforms to, and plays a role in, the overall logic of the quipu. It is clear that spin, ply, and knot directionality are not chosen by the quipu-maker on a cord-by-cord basis and they do not serve to distinguish between quantitative and non-quantitative data.

Para analizar los quipus es esencial identificar su estructura lógica y como se relacionan internamente los datos dentro de esa estructura. El proceso de identificación depende en el examen detallado de los colores, la colocación, y la distancia de los cordones además del tipo de nudo y su posición en el cordón. Ha estado disponible recientemente información sobre la orientación de la torsión, las hebras, y los nudos de 59 quipus ya harto descritos. Examino esta información adicional en el contexto de la lógica de los quipus. Mi análisis demuestra que en estos quipus, con la excepción de tres de ellos en los cuales el cordón principal difiere del resto, son uniforme la torsión y las hebras de todos sus cordones. En la mayoría (un 81 por ciento), la orientación del nudo también es uniforme. Discuto individualmente el 19 por ciento cuyos nudos tienen orientación mixta. En estos, la orientación del nudo concuerda, y juega un papel, en la lógica total del quipu. Resulta entonces obvio que el creador del quipu no selecciona la orientación de la torsión, las hebras, y el nudo para cada cordón individualmente y que estos detalles no se prestan para distinguir entre datos cuantitativos y no cuantitativos.

Type
Reports
Copyright
Copyright © 2005 by the Society for American Archaeology.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ascher, Marcia 1983 The Logical-Numerical System of Inca Quipus. Annals of the History of Computing 5:268278.CrossRefGoogle Scholar
Ascher, Marcia 2002 Reading Khipu: Labels, Structure, and Format. In Narrative Threads: Accounting and Recounting in Andean Khipu, edited by Jeffrey Quilter and Gary Urton, pp. 87102. University of Texas Press, Austin.Google Scholar
Ascher, Marcia, and Ascher, Robert 1978 Code of the Quipu: Databook. University of Michigan Press, Ann Arbor. (Available at http://instructl.cit.cor-nell.edu/research/quipu-ascher/)Google Scholar
Ascher, Marcia, and Ascher, Robert 1988 Code of the Quipu: Databook II. Marcia and Robert Ascher, Ithaca, New York. (Available at http://instructl.cit.cornell.edu/research/quipu-ascher/)Google Scholar
Ascher, Marcia, and Ascher, Robert 1989 Are There Numbers in the Sky? In Time and Calendars in the lnca Empire, edited by Mariuz S. Ziólkowski and Robert M. Sadowski, pp. 3548. BAR International Series 479. British Archaeological Reports, Oxford.Google Scholar
Ascher, Marcia, and Ascher, Robert 1997 Mathematics of the Incas: Code of the Quipu. Dover Publications, New York. Originally published in 1981 as Code of the Quipu: A Study in Media, Mathematics and Culture. University of Michigan Press, Ann Arbor.Google Scholar
Ascher, Robert 2002 Inka Writing. In Narrative Threads: Accounting and Recounting in Andean Khipu, edited by Jeffrey Quilter and Gary Urton, pp. 103115. University of Texas Press, Austin.Google Scholar
Conklin, William J. 1982 The Information System of Middle Horizon Quipus. In Ethnoastronomy and Archaeoastronomy in the American Tropics, edited by Anthony F. Aveni and Gary Urton, pp. 261281. Annals of New York Academy of Sciences, Vol. 385. New York Academy of Sciences, New York.Google Scholar
Mackey, Carol 2002 The Continuing Khipu Traditions: Principles and Practices. In Narrative Threads: Accounting and Recounting in Andean Khipu, edited by Jeffrey Quilter and Gary Urton, pp. 320347. University of Texas Press, Austin.Google Scholar
Urton, Gary 1994 A New Twist in an Old Yarn: Variation in Knot Directionality in the Inka Khipus. Baessler-Archiv, Neue Folge, Band 42:271305.Google Scholar
Urton, Gary 1997 A Catalogue of Spinning, Plying and Knot Directions on Inka Khipus. Paper presented at the Khipu Round Table. Dumbarton Oaks, Washington, D.C.Google Scholar
Zuidema, R. Tom 1977 The Inca Calendar. In Native American Astronomy, edited by Anthony. F. Aveni, pp. 219259. University of Texas Press, Austin.Google Scholar