Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T15:55:00.806Z Has data issue: false hasContentIssue false

An Analysis of pXRF Obsidian Source Attributions from Tikal, Guatemala

Published online by Cambridge University Press:  20 January 2017

Hattula Moholy-Nagy
Affiliation:
University of Pennsylvania Museum, Philadelphia PA, 1204 Gardner Avenue, Ann Arbor, MI 48104-4321 ([email protected])
James Meierhoff
Affiliation:
Department of Anthropology, University of Illinois at Chicago, 1007 West Harrison Street, Behavioral Sciences Building, Chicago, IL 60607-7139 ([email protected]; [email protected])
Mark Golitko
Affiliation:
Field Museum of Natural South Lake Shore Drive, Chicago, IL 60605 ([email protected])
Caleb Kestle
Affiliation:
Department of Anthropology, University of Illinois at Chicago, 1007 West Harrison Street, Behavioral Sciences Building, Chicago, IL 60607-7139 ([email protected]; [email protected])

Abstract

Portable X-ray fluorescence spectrometry (pXRF) was used to obtain source determinations for 2,235 obsidian artifacts. These were supplemented by 48 previously published results made by X-ray fluorescence spectrometry (XRF) and instrumental neutron activation analysis (INAA) to bring the total sample to 2,283. Thirteen geological sources have been identified by instrument to date. Three sources in Highland Guatemala accounted for nearly 98 percent of all attributions, with approximately 2 percent from 10 green and gray obsidian sources in central Mexico. Geological sources can be brought into cultural context by examining their distributions among types of artifacts, recovery contexts, structure group types, distance from the Classic period epicenter of the city, and chronological relationships. Several procurement systems operated to import obsidian cores and other artifacts. Consumers obtained obsidian artifacts primarily through marketplace exchange, but other kinds of distribution are also indicated. The reliability, portability, rapidity, ease of use, non-destructive nature, and relatively low cost of pXRF show promise for the acquisition of the source attributions needed to construct the past cultural contexts of obsidian procurement and use. This method produces results comparable to those obtained by other kinds of instrumental analysis, and with a considerably higher degree of reliability than visual determinations.

Presentamos y discutimos atributos de yacimientos geológicos de 2,235 artefactos de obsidiana del sitio de Tikal obtenidos por medio de un instrumento portátil de espectrometría fluorescente (pXRF). Incluimos también otros 48 resultados instrumentales publicados previamente, sumando un total de 2,283 muestras. De los 13 yacimientos identificados en este análisis, casi el 98 por ciento provinieron de los tres sitios en el altiplano de Guatemala más cercanos a Tikal. Casi el 91 por ciento del total son de un sólo yacimiento, El hay al. Alrededor del 2 por ciento son de 11 yacimientos de obsidianas grises y verdes del centro de México; algunos de estos se ubican a más de 1,000 km-aire de Tikal. Un total de 556 artefactos de obsidiana verde de México forman el uno por ciento de los aproximadamente 50,000 objetos de obsidiana registrados de Tikal. Una base de datos de esta magnitud proveniente de un sólo sitio permite el examen de los artefactos identificados como materiales culturales en lugar de sólo muestras geológicas. Al estudiar la distribución de yacimientos de obsidiana entre tipos de artefactos, contextos de recuperación, tipos de grupos de construcciones, la distancia desde el centro de la ciudad, y los cambios de yacimientos a través del tiempo, podemos situar la importación y empleo de la obsidiana en su contexto cultural pasado. El método de análisis pXRF es portátil, fácil, rápido, exacto y relativamente económico. Además, su naturaleza no-destructiva presenta un considerable potencial para la adquisición de muestras grandes para atribuciones de yacimientos. Este método puede rápida y económicamente producir resultados comparables a los obtenidos por otros métodos de análisis instrumentales y con mucho más precisión que las determinaciones visuales.

Type
Articles
Copyright
Copyright © Society for American Archaeology 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Andrews, Bradford 2002 Stone Tool Production at Teotihuacan: What More Can We Learn from Surface Collections? In Pathways to Prismatic Blades: A Study in Mesoamerican Obsidian Core-Blade Technology, edited by Kenneth Hirth and Bradford Andrews, pp. 4760. Cotsen Institute of Archaeology, Monograph 45. University of California, Los Angeles.Google Scholar
Berdan, Frances F., Masson, Marilyn A., Gasco, Janine, and Smith, Michael E. 2003 An International Economy. In The Postclassic Mesoamerican World, edited by Michael E. Smith and Frances F. Berdan, pp. 96108. University of Utah Press, Salt Lake City.Google Scholar
Braswell, Geoffrey E. 2003 Obsidian Exchange Spheres. In The Postclassic Mesoamerican World, edited by Michael E. Smith and Frances F. Berdan, pp. 131158. University of Utah Press, Salt Lake City.Google Scholar
Braswell, Geoffrey E. 2010 The Rise and Fall of Market Exchange: A Dynamic Approach to Ancient Maya Economy. In Archaeological Approaches to Market Exchange in Ancient Societies, edited by Christopher P. Garraty and Barbara L. Stark, pp. 127140. University Press of Colorado, Boulder.Google Scholar
Braswell, Geoffrey E., Clark, John E., Aoyama, Kazuo, McKillop, Heather I., and Glascock, Michael D. 2000 Determining the Geological Provenance of Obsidian Artifacts from the Maya Region: A Test of the Efficacy of Visual Sourcing. Latin American Antiquity 11:269282.Google Scholar
Braswell, Geoffrey E., Paap, Dcen, and Glascock, Michael D. 2011 The Obsidian and Ceramics of the Puuc Region: Chronology, Lithic Procurement, and Production at Xkipche, Yucatan, Mexico. Ancient Mesoamerica 22(1):135154.Google Scholar
Carballo, David M. 2007 Implements of Power: Weaponry and Martially Themed Obsidian Production Near the Moon Pyramid, Teotihuacan. Ancient Mesoamerica 18(1):173190.Google Scholar
Carballo, David M. 2009 Household and Status in Formative Central Mexico: Domestic Structures, Assemblages, and Practices at La Laguna, Tlaxcala. Latin American Antiquity 20:473501.Google Scholar
Carballo, David M., Carballo, Jennifer, and Neff, Hector 2007 Formative and Classic Period Obsidian Procurement in Central Mexico: A Compositional Study Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Latin American Antiquity 18(1):2743.Google Scholar
Carr, Robert F., and Hazard, James E. 1961 Map of the Ruins of Tikal, El Peten, Guatemala. Tikal Report No. 11. The University Museum, University of Pennsylvania, Philadelphia.Google Scholar
Cecil, Leslie G., Moriarty, Matthew, Speakman, Robert J., and Glascock, Michael D. 2007 Feasibility of Field-Portable XRF to Identify Obsidian Sources in Central Petén, Guatemala. In Archaeological Chemistry: Analytical Techniques and Archaeological Interpretation, edited by Michael D. Glascock, Robert J. Speakman, and Rachel S. Popelka-Filcoff, pp. 506521. American Chemical Society, Washington, D.C.Google Scholar
Clark, John E. 1997 Prismatic Blademaking, Craftsmanship, and Production: An Analysis of Obsidian Refuse from Ojo de Agua, Chiapas, Mexico. Ancient Mesoamerica 8:137159.Google Scholar
Clark, John E., and Bryant, Douglas Donne 1997 A Technical Typology of Prismatic Blades and Debitage from Ojo de Agua, Chiapas, Mexico. Ancient Mesoamerica 8:111136.Google Scholar
Clark, John E., and Lee, Thomas A. Jr. 1979 A Behavioral Model for the Obsidian Industry of Chiapa de Corzo. Estudios de Cultura Maya 12:3351.Google Scholar
Coe, William R. 1990 Excavations in the Great Plaza, North Terrace and North Acropolis of Tikal. Tikal Report 14. The University Museum, University of Pennsylvania, Philadelphia.Google Scholar
Culbert, T. Patrick 1993 The Ceramics of Tikal: Vessels from the Burials, Caches, and Problematical Deposits. Tikal Report No. 25, Part A. The University Museum, University of Pennsylvania, Philadelphia.Google Scholar
Culbert, T. Patrick 2003 The Ceramics of Tikal. In Tikal: Dynasties, Foreigners, and Affairs of State, edited by Jeremy A. Sabloff, pp. 4781. School of American Research Press, Santa Fe, New Mexico.Google Scholar
Drake, Brandon L., Nazaroff, Adam J., and Prufer, Keith M. 2009 Error Assessment of Portable X-Ray Fluorescence Spectrometry in Geochemical Sourcing. SAS Bulletin: Newsletter of the Society for Archaeological Sciences 32(3): 1417.Google Scholar
Frahm, Ellery 2012 Validity of “Off-the-Shelf” Handheld Portable XRF for Sourcing Near Eastern Obsidian Chip Debris. Journal of Archaeological Science. Electronic document, http://dx.doi.org/10.1016/j.jas.2012.06.038, accessed November 2,2012.Google Scholar
Glascock, Michael D. 1993 Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Hector Neff, pp. 1126. Prehistory Press, Madison.Google Scholar
Glascock, Michael D. 1999 An Inter-Laboratory Comparison of Element Compositions for Two Obsidian Sources. IAOS Bulletin 23:1325.Google Scholar
Glascock, Michael D. 2002 Introduction. In Geochemical Evidence for Long-Distance Exchange, edited by Michael D. Glascock, pp. 111. Bergin and Garvey, Westport, Connecticut.Google Scholar
Glascock, Michael D. 2011 Comparison and Contrast Between XRF and NAA: Used for Characterization of Obsidian Sources in Central Mexico. In X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M. Steven Shackley, pp. 161192. Springer, New York.CrossRefGoogle Scholar
Glascock, Michael D., and Cobean, Robert H. 2002 A Summary of Elemental Concentration Data for Obsidian Source Groups in Mexico. In A World of Obsidian: The Mining and Trade of Volcanic Glass in Ancient Mexico, edited by Robert H. Cobean, pp. 239276. University of Pittsburgh and Instituto Nacional de Antropología e Historia, Pittsburgh and Mexico City.Google Scholar
Glascock, Michael D., Braswell, Geoffrey E., and Cobean, Robert H. 1998 A Systematic Approach to Obsidian Source Characterization. In Archaeological Obsidian Studies: Method and Theory, edited by M. Steven Shackley, pp. 1565. Plenum Press, New York and London.Google Scholar
Glascock, Michael D., Weigand, Phil C., López, Rodrigo Esparza, Ohnersorgen, Michael A., Ambriz, Mauricio Garduno, Mountjoy, Joseph B., and Andrew Darling, J. 2010 Geochemical Characterization of Obsidian in Western Mexico: The Sources in Jalisco, Nayarit, and Zacatecas. In Crossing the Straits: Prehistoric Obsidian Source Exploitation in the North Pacific Rim, edited by Yaroslav V. Kuzmin and Michael D. Glascock, pp. 201208. BAR International Series 2152. British Archaeological Reports, Archaeopress, Oxford.Google Scholar
Golitko, Mark, Meierhoff, James, and Terrell, John E. 2010 Chemical Characterization of Sources of Obsidian from the Sepik Coast (PNG). Archaeology in Oceania 45:120129.Google Scholar
Graham, John A., and Heizer, Robert F. 1968 Notes on the Papalhuapa Site, Guatemala. Contributions of the University of California Archaeological Research Facility 5:101125. Berkeley.Google Scholar
Haviland, William A. 1981 Dower Houses and Minor Centers at Tikal, Guatemala: An Investigation into the Identification of Valid Units in Settlement Hierarchies. In Lowland Maya Settlement Patterns, edited by Wendy Ashmore, pp. 89117. University of New Mexico Press, Albuquerque.Google Scholar
Haviland, William A. 1985 Excavations in Small Residential Groups of Tikal: Groups 4F-l and 4F-2. Tikal Report No. 19. The University Museum, University of Pennsylvania, Philadelphia.Google Scholar
Hirth, Kenneth G. 1998 The Distributional Approach: A New Way to Identify Marketplace Exchange in the Archaeological Record. Current Anthropology 39:451476.Google Scholar
Hirth, Kenneth G. 2010 Finding the Mark in Marketplace: The Organization, Development, and Archaeological Identification of Market Systems. In Archaeological Approaches to Market Exchange in Ancient Societies, edited by Christopher P. Garraty and Barbara L. Stark, pp. 227247. University Press of Colorado, Boulder.Google Scholar
Hodge, Mary G., and Mine, Leah D. 1990 The Spatial Patterning of Aztec Ceramics: Implications for Pre-Hispanic Exchange Systems in the Valley of Mexico. Journal of Field Archaeology 17:415437.Google Scholar
Iglesias Ponce de León, María Josefa 2003 Problematical Deposits and the Problem of Interaction: The Material Culture of Tikal during the Early Classic. In The Maya and Teotihuacan: Reinterpreting Early Classic Interaction, edited by Geoffrey E. Braswell, pp. 167198. University of Texas Press, Austin.Google Scholar
Jack, Robert N., and Heizer, Robert F. 1968 “Finger-Printing” of Some Mesoamerican Obsidian Artifacts. Contributions of the University of California Archaeological Research Facility 5:81100. Berkeley.Google Scholar
Jackson, Thomas L., and Love, Michael W. 1991 Blade Running: Middle Preclassic Obsidian Exchange and the Introduction of Prismatic Blades at La Blanca, Guatemala. Ancient Mesoamerica 2:4759.Google Scholar
Jones, Christopher 1996 Excavations in the East Plaza of Tikal. Tikal Report 16. University of Pennsylvania Museum, Philadelphia.Google Scholar
Kidder, Alfred V. 1947 The Artifacts of Uaxactun, Guatemala. Publication 576. Carnegie Institution of Washington, Washington, D.C.Google Scholar
Knight, Charles L. F., and Glascock, Michael D. 2009 The Terminal Formative to Classic Period Obsidian Assemblage at Palo Errado, Veracruz, Mexico. Latin American Antiquity 20:507524.Google Scholar
Laporte, Juan Pedro, and Valdes, Juan Antonio 1993 Tikal y Uaxactún en el Preclásico. Instituto delnvestigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Loomis, Frederic Brewster 1923 Field Book of Common Rocks and Minerals. G.P.Putnam’s Sons, New York and London.Google Scholar
Meierhoff, James, Golitko, Mark, and Morris, John 2010 Sourcing of obsidian from the ancient Maya farming community of Chan, Belize, using portable-XRF. SAS Bulletin 33:58.Google Scholar
Millhauser, John K., Rodríguez-Alegría, Enrique, and Glascock, Michael D. 2011 Testing the Accuracy of Portable X-ray Fluorescence to Study Aztec and Colonial Obsidian Supply at Xaltocan, Mexico. Journal of Archaeological Science 38(11): 31413152.Google Scholar
Mine, Leah D. 1994 Political Economy and Market Economy under Aztec Rule: A Regional Perspective Based on Decorated Ceramic Production and Distribution Systems in the Valley of Mexico. Unpublished Ph.D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Mine, Leah D. 2009 Style and Substance: Evidence for Regionalism within the Aztec Market System. Latin American Antiquity 20:343374.Google Scholar
Moholy-Nagy, Hattula 1975 Obsidian at Tikal, Guatemala. Actas del XLI Congreso International de Americanistas 1.511–518. Mexico City.Google Scholar
Moholy-Nagy, Hattula 1997 Middens, Construction Fill, and Offerings: Evidence for the Organization of Classic Period Craft Production at Tikal, Guatemala. Journal of Field Archaeology 24:293313.Google Scholar
Moholy-Nagy, Hattula 1999 Mexican Obsidian at Tikal, Guatemala. Latin American Antiquity 10:300313.CrossRefGoogle Scholar
Moholy-Nagy, Hattula 2003a Source Attribution and the Utilization of Obsidian in the Maya Area. Latin American Antiquity 14(3):301310.Google Scholar
Moholy-Nagy, Hattula 2003b The Artifacts of Tikal: Utilitarian Artifacts and Unworked Materials. Tikal Report No. 27, Part B. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia.Google Scholar
Moholy-Nagy, Hattula 2003c The Hiatus at Tikal. Ancient Mesoamerica 14(1):7783.Google Scholar
Moholy-Nagy, Hattula 2008 The Artifacts of Tikal: Ornamental and Ceremonial Artifacts and Unworked Material. Tikal Report No. 27, Part A. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia.Google Scholar
Moholy-Nagy, Hattula, and Nelson, Fred W. 1990 New Data on Sources of Obsidian Artifacts from Tikal, Guatemala. Ancient Mesoamerica 1:7180.Google Scholar
Moholy-Nagy, Hattula, Asaro, Frank, and Stross, Fred H. 1984 Tikal Obsidian: Sources and Typology. American Antiquity 49:104117.Google Scholar
Nazaroff, Adam J., Prufer, Keith M., and Drake, Brandon L. 2010 Assessing the Applicability of Portable X-ray Fluorescence Spectrometry for Obsidian Provenance Research in the Maya Lowlands. Journal of Archaeological Science 37:885895.Google Scholar
Parry, William J. 2002 Aztec Blade Production Strategies in the Eastern Basin of Mexico. In Pathways to Prismatic Blades: A Study in Mesoamerican Obsidian Core-Blade Technology, edited by Kenneth Hirth and Bradford Andrews, pp. 3745. Cotsen Institute of Archaeology, Monograph 45. University of California, Los Angeles.Google Scholar
Pastrana, Alejandro 2002 Variation at the Source: Obsidian Exploitation at Sierra de Las Navajas, Mexico. In Pathways to Prismatic Blades: A Study in Mesoamerican Obsidian Core-Blade Technology, edited by Kenneth Hirth and Bradford Andrews, pp. 1526. Cotsen Institute of Archaeology, Monograph 45. University of California, Los Angeles.Google Scholar
Ponomarenko, Alyson Lightfoot 2004 The Pachuca Obsidian Source, Hidalgo, Mexico: A Geoarchaeological Perspective. Geoarchaeology: An International Journal 19(1):7191.CrossRefGoogle Scholar
Puleston, Dennis E. 1983 The Settlement Survey of Tikal. Tikal Report No. 13, edited by William A. Haviland. The University Museum, University of Pennsylvania, Philadelphia.Google Scholar
Reepmeyer, Christian, Spriggs, Matthew, Anggraeni, A., Lape, Peter, Neri, Leee, Ronquillo, Wilfredo P., Simanjuntak, Truman, Summerhayes, Glenn, Tanudirjo, Daud, and Tiauzon, Archie. 2011 Obsidian Sources and Distribution Systems in Island Southeast Asia: New Results and Implications from Geochemical Research Using LA-ICPMS. Journal of Archaeological Science 38:29953005.Google Scholar
Santley, Robert S., and Barrett, Thomas P. 2002 Lithic Technology, Assemblage Variation, and the Organization of Production and Use of Obsidian on the South Gulf Coast of Veracruz, Mexico. In Pathways to Prismatic Blades: A Study in Mesoamerican Obsidian Core-Blade Technology, edited by Kenneth Hirth and Bradford Andrews, pp. 91103. Cotsen Institute of Archaeology, Monograph 45. University of California, Los Angeles.Google Scholar
Santley, Robert S., and Kneebone, Ronald 1993 Craft Specialization, Refuse Disposal, and the Creation of Spatial Archaeological Records in Prehispanic Mesoamerica. In Prehispanic Domestic Units in Western Mesoamerica: Studies of the Household, Compound, and Residence, edited by Robert S. Santley and Kenneth G. Hirth, pp. 3763. CRC Press, Boca Raton, Florida.Google Scholar
Schiffer, Michael B. 1972 Archaeological Context and Systemic Context. American Antiquity 37:156165.Google Scholar
Shackley, M. Steven 2010 Is There Reliability and Validity in Portable X-ray Fluorescence Spectrometry (PXRF)? The SAA Archaeological Record 10(3):1720.Google Scholar
Sheets, Payson D. 1975 Behavioral Analysis and the Structure of a Prehistoric Industry. Current Anthropology 16:369391.Google Scholar
Shott, Michael J., and Trail, Brian W. 2012 New Developments in Lithic Analysis. The SAA Archaeological Record 12(3):1217.Google Scholar
Speakman, Robert J., Popelka, Rachel S., Glascock, Michael D., David Robertson, J., and Descontes, Christophe 2005 Examining the Potential of Field Portable-XRF for Archaeological Provenance Investigation of Guatemalan Obsidian: First Generation Data. Poster presented at the Meeting of the Society for American Archaeology, Salt Lake City.Google Scholar
Stark, Barbara L., and Garraty, Christopher P. 2010 Detecting Marketplace Exchange in Archaeology: A Methodological Review. In Archaeological Approaches to Market Exchange in Ancient Societies, edited by Christopher P. Garraty and Barbara L. Stark, pp. 3358. University Press of Colorado, Boulder.Google Scholar
Stress, Fred H., Weaver, J. R., Wyld, G. E. A., Heizer, Robert F., and Graham, John A. 1968 Analysis of American Obsidians by X-ray Fluorescence and Neutron Activation Analysis. Contributions of the University of California Archaeological Research Facility 5:5979. Berkeley.Google Scholar
Tolstoy, Paul 1971 Utilitarian Artifacts of Central Mexico. In Archaeology of Northern Mesoamerica, Part One, edited by Gordon F. Ekholm and Ignacio Bernal, pp. 270296. Handbook of Middle American Indians, Vol. 10, Robert Wauchope, general editor, University of Texas Press, Austin.Google Scholar
Walker, William H. 1995 Ceremonial Trash? In Expanding Archaeology, edited by James M. Skibo, William H. Walker, and Axel E. Nielsen, pp. 6779. University of Utah Press, Salt Lake City.Google Scholar
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S1

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 560.4 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S2

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 51.7 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S3

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 59.3 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S4a

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 108.4 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S4b

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 45.4 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S4c

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 48.9 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S4d

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 46 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S4e

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 46.9 KB
Supplementary material: PDF

Moholy-Nagy et al. Supplementary Material

Table S4f

Download Moholy-Nagy et al. Supplementary Material(PDF)
PDF 50.1 KB