Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T13:48:26.842Z Has data issue: false hasContentIssue false

X-ray spectral diagnostics for satellite lines of H-like Mg ions measured by a high resolution spectrometer

Published online by Cambridge University Press:  01 July 2004

TAKAKO KATO
Affiliation:
National Institute for Fusion Science, Toki, Japan
NORIMASA YAMAMOTO
Affiliation:
Rikkyo University, Tokyo, Japan
FRANK B. ROSMEJ
Affiliation:
Université de Provence et CNRS, Centre de Saint Jérôme, PIIM, UMR, Marseille cedex, France

Abstract

X-ray spectra of H-like Mg ions produced in a laser plasma have been measured by space-resolved high-resolution spectroscopy. We identified satellite lines near Lyα lines, 2lnl′ − 1snl′ + hν for n = 2, 3, and 4. We construct a collisional radiative model including the doubly excited states for the intensity ratios of satellite lines. We use atomic data calculated by different methods for satellite lines and compare the results. We derive the electron temperature and density of the laser-produced plasma by a new technique using intensity ratios of only satellite lines. This technique is useful because the Lyα lines are often affected by opacity.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bar-Shalom, A., Klapsch, M. & Oreg, J. (1988). Phys. Rev. A 38 1773.
Bely-Dubau, F., Dubau, J., Faucher, P., Gabriel, A.H., Loulergue, M., Steenman-Clark, L., Volonte, S., Antonucci, E. & Rapley, C.G. (1982). Mom. Not. R. Astron. Soc 201, 1155.
Bitter, M. et al. (1984). Phys. Rev. A 29, 661.
Demir, A., Zeitoun, P., Tallents, G.J. et al. (1997). Phys. Rev. E 55, 1827.
Dubau, J. & Volonte, S. (1980). Dielectronic recombination and its applications in astronomy. Rep. Prog. Phys. 43, 199251.Google Scholar
Fujimoto, T., Yamaguchi, N., Mizui, J., Kato, T. & Fujita, F. (1981). J. Phys. D 14, 439.
Goett, S.T., Sampson, D.H. & Clark, R.E.H. (1983). Atomic and Nuclear Data Table 28, 279.
Kato, T., Fujiwara, T. & Hanaoka, Y. (1998). Astrophys. J. 492, 822832.
Kato, T., Morita, S., Masai, K. & Hayakawa, S. (1987). Phys. Rev. A 36, 795803.
Kato, T., Yamamoto, N., More, R. & Fujimoto, T. (2001). J Quantitative Spectroscopy and Radiative Transfer 71, 431.
Rosmej, F.B. et al. (1999). JETP Lett. 70, 270.
Rosmej, F.B. et al. (2001). Phys. Rev. A 63, 32716.
Sampson, D.H., Goett, S.J. & Clark, R.E.H. (1983). ADNDT 28, 299.
Tokman, M., Eklöw, N., Glans, P., Lindroth, E., Schuch, R., Gwinner, G., Schwalm, D., Wolf, A., Hoffknecht, A., Müller, A. & Schippers, S. (2002). Phys. Rev. A 66, 012703.
Vainshtein, L.A. & Safronova, U.I. (1978). ADNDT 25, 311.
Vainshtein, L.A. & Safronova, U.I. (2000). personal communication.
Vinogradov, A.V., Skobelev, I.Yu., Yukov, E.A. (1975). Sov. J. Quant. Electron. 5, 630.
Yamamoto, N., Kato, T. & Fujimoto, T. (2002). J. Plasma Fusion Res. 78, 193.