Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T08:38:34.775Z Has data issue: false hasContentIssue false

X-ray microscopy of laser-produced plasmas with the use of bent crystals

Published online by Cambridge University Press:  09 March 2009

E. Förster
Affiliation:
Department of Physics, Friedrich-Schiller-University Jena, Jena 6900, Germany
K. Gäbel
Affiliation:
Department of Physics, Friedrich-Schiller-University Jena, Jena 6900, Germany
I. Uschmann
Affiliation:
Department of Physics, Friedrich-Schiller-University Jena, Jena 6900, Germany

Abstract

X-ray spectroscopical and microscopical methods are used for the determination of the spectral and spatial distribution of X-ray intensity of laser-produced plasmas. The use of Bragg reflections of two-dimensionally bent crystals enables the X-ray microscopical imaging in narrow spectral ranges (Δλ/λ = 10−4 to 10−2) with wavelengths 0.1 nm < λ > 2.6 nm. It is possible to adapt, in the X-ray microscope, the distances, magnification, position, and width of the spectral window to the special conditions of the laser facility. Manufacturing and testing of the two-dimensionally bent crystals requires a great deal of effort. It was demonstrated that a spatial resolution of about 5 μm was achieved, and that the experimentally determined reflectivity was found to be in close agreement with the dynamical theory of X-ray interferences. Due to high luminosity of the X-ray microscope, in experiments with laser-produced plasmas it was necessary to attenuate the radiation with aperture-limiting diaphragms or filters down to 0.01–1% of the original intensity in the case of a magnification of about one. Emission of the resonance line W 1–2, the intercombination line of helium-like ions, and Lyman alpha line were imaged simultaneously with a three-channel microscope. Such images form the foundation for establishing the Ne(r), Tz(r) maps.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I. V. et al. 1985 Trudy Fiz. Inst. P. N. Lebedeva, Moscow, 149, 22.Google Scholar
Basov, N. G. et al. 1987 Proc. of Ernst-Abbe Conf.,Jena,235.Google Scholar
Berreman, D. W. et al. 1977 Appl. Opt., 16, 2081.CrossRefGoogle Scholar
Boiko, V. A. et al. 1985 J. Soviet Laser Res., 6, 85.Google Scholar
Brown, C. M. et al. 1988 Opt. Commun., 68, 190.CrossRefGoogle Scholar
Byrnak, B. P. et al. 1985 Appl. Opt., 24, 2543.CrossRefGoogle Scholar
Ceglio, N. M. 1980 Ann. N.Y. Acad. Sci., 342, 65.CrossRefGoogle Scholar
Culhane, J. L. 1988 Adv. Space Res., 8, 67.CrossRefGoogle Scholar
DeMichelis, C. & Mattioli, M. 1981 Nucl. Fusion, 21, 677.CrossRefGoogle Scholar
DeMichelis, C. & Mattioli, M. 1984 Rep. Prog. Phys., 47, 1233.CrossRefGoogle Scholar
Dick, M. et al. 1982 FSU-preprint N/82/3.CrossRefGoogle Scholar
Dick, M. 1984 Dissertation, Univ. Jena.Google Scholar
DuMond, J. W. H. 1947 Rev. Sci. Instrum., 18, 626.CrossRefGoogle Scholar
Földes, I. B. et al. 1988 Laser Part. Beams, 6, 123.CrossRefGoogle Scholar
Förster, E. 1985 Dissertation, Univ. Jena.Google Scholar
Förster, E. et al. 1987 Annal. Physik, 7. Folge, 44, 61.CrossRefGoogle Scholar
Henke, B. L. et al. 1984 J. Opt. Soc. Am., B1, 818.CrossRefGoogle Scholar
Henke, B. L. & Jaanimagi, 1985 Rev. Sci. Instrum., 56, 1537.CrossRefGoogle Scholar
Henke, B. L. et al. 1986 J. Opt. Soc. Am., B3, 1540.CrossRefGoogle Scholar
Johansson, T. 1933 Z. Phys., 82, 507.CrossRefGoogle Scholar
Key, M. H. 1984 Plasma Phys. Contr. Fus., 26, 1383.CrossRefGoogle Scholar
Linfoot, E. H. 1964 Fourier Methods Opt. Image Eval. (The Focal Library).Google Scholar
Luhmann, N. C. Jr., & Peebles, 1984 Rev. Sci. Instrum., 55, 279.CrossRefGoogle Scholar
Morita, S. 1983 Jpn. J. Appl. Phys., 22, 6 (1030).Google Scholar
Nilson, D. G. et al. 1988 Laser Part. Beams, 6, 751.CrossRefGoogle Scholar
Röhler, R. 1967 Informat. Theorie in der Optik, Stuttgart Wiss. Verlagsgesell.Google Scholar
Rumsby, P. T. 1985 J. Microscopy, 138, 245.CrossRefGoogle Scholar
Takagi, S. 1962 Acta Cryst., 15, 1131.CrossRefGoogle Scholar
Taupin, D. 1964 Dissertation, Univ. Paris.Google Scholar