Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:57:48.113Z Has data issue: false hasContentIssue false

X-ray laser scheme driven by two laser pulses

Published online by Cambridge University Press:  09 March 2009

A. Baer
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
J.L. Schwob
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
S. Eliezer
Affiliation:
Plasma Physics Group, Soreq Nuclear Research Center, Yavne 70600, Israel
Z. Henis
Affiliation:
Plasma Physics Group, Soreq Nuclear Research Center, Yavne 70600, Israel
S. Eliezer
Affiliation:
Instituto de Fusión Nuclear, Universidad Politécnica de Madrid, Espana

Abstract

A study is presented to find a compact X-ray laser in the spectral range of the water window. A double laser pulse method that requires a minimum energy with an optimal timing is proposed. The precreated plasma with an optimal ion distribution is heated by a short second pulse creating the required population inversion. In particular, the Ni-like 4d→4p transitions in tantalum, tungsten, and cesium are calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bar-Shalom, A. 1983 PhD. Thesis Hebrew University Jerusalem.Google Scholar
Daido, H. et al. 1995 Phys. Rev. Lett. 75, 1074.CrossRefGoogle Scholar
Eliezer, H. et al. 1978 J. Phys. D Appl. Phys. 11, 1693.CrossRefGoogle Scholar
Goldstein, W.H. et al. 1988 Phys. Rev. A38, 1797.CrossRefGoogle Scholar
Klappisch, M 1977 J. Opt. Soc. Am. 67, 148.CrossRefGoogle Scholar
Lee, T.N. 1987 Phys. Rev. Lett. 59, 1185.CrossRefGoogle Scholar
Li, Y. 1996 Phys. Rev. A53, R652.Google Scholar
MacGowan, B.J. et al. 1987 Phys. Rev. Lett, 59, 2157.CrossRefGoogle Scholar
MacGowan, B.J. et al. 1988 J. Opt. Soc Am. B5, 1858.CrossRefGoogle Scholar
MacGowan, B.J. et al. 1990 Phys. Rev. Lett, 65, 420.CrossRefGoogle Scholar
Matthews, D.L. et al. 1985 Rev. Lett, 54, 110.CrossRefGoogle Scholar
Maxon, S. et al. 1985 J. App. Phys. 57, 971.CrossRefGoogle Scholar
Maxon, S. et al. 1988 Phys. Rev. Lett, A37, 2227.Google Scholar
Maxon, S. et al. 1989 Phys. Rev. Lett, 63, 236.CrossRefGoogle Scholar
Maxon, S. et al. 1993 Phys. Rev. Lett, 70, 2285.CrossRefGoogle Scholar
Nilsen, J. & Moreno, J.C. 1995 Optics Lett. 20, 1386.CrossRefGoogle Scholar
Norreys, P.A. & Djaoui, A. Rutherford Report.Google Scholar
Rosen, M.D. 1991 UCRL-JC-105739 Report.Google Scholar
Razanov, V. & Vergunova, G. 1985 Kvantovaya Electronika 12, 248.Google Scholar
Suckewer, S. et al. 1985 Phys. Rev. Lett. 55, 1753.CrossRefGoogle Scholar
Tallents, G.J. (ed.) 1990 X-ray Lasers. (Institute of Physics, Bristol).Google Scholar
Whitney, K.G. et al. 1994 Phys. Rev. E 50, 468.CrossRefGoogle Scholar
Zigler, et al. 1986 Phys. Lett. A 111, 31.CrossRefGoogle Scholar