Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T05:06:36.485Z Has data issue: false hasContentIssue false

X-ray and ion emission studies from subnanosecond laser-irradiated SiO2 aerogel foam targets

Published online by Cambridge University Press:  10 August 2017

C. Kaur
Affiliation:
High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai – 400085, India Homi Bhabha National Institute, Anushaktinagar, Mumbai – 400 094, India
S. Chaurasia*
Affiliation:
High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai – 400085, India
A.A. Pisal
Affiliation:
Air Glass Laboratory, Department of Physics, Shivaji University, Kohlapur – 416 004, Maharashtra, India
A.K. Rossall
Affiliation:
International Institute for Accelerator Applications, University of Huddersfield HD1 3DH, UK
D.S. Munda
Affiliation:
High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai – 400085, India
A. Venkateswara Rao
Affiliation:
Air Glass Laboratory, Department of Physics, Shivaji University, Kohlapur – 416 004, Maharashtra, India
M.N. Deo
Affiliation:
High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai – 400085, India
*
Address correspondence and reprint requests to: S. Chaurasia, High Pressure & Synchrotron Radiation Physics Division, Purnima Building, Bhabha Atomic research Centre, Trombay, Mumbai-400085, India. E-mail: [email protected]

Abstract

In this experiment, a comparative study of ion and X-ray emission from both a SiO2 aerogel foam and a quartz target is performed. The experiment is performed using Nd:glass laser system operated at laser energy up to 15 J with a pulse duration of 500 ps with focusable intensity of 1013–1014 W/cm2 on target. X-ray fluxes in different spectral ranges (soft and hard) are measured by using X-ray diodes covered with Al filters of thickness 5 µm (0.9–1.56 keV) and 20 µm (3.4–16 keV). A 2.5 times enhancement in soft X-ray flux (0.9–1.56 keV) and a decrease of 1.8 times in hard X rays (3.4–16 keV) for 50 mg/cc SiO2 aerogel foam is observed compared with the solid quartz. A decrease in the flux of the K-shell line emission spectrum of soft X rays is noticed in the case of the foam targets. The high-resolution K-shell spectra (He-like) of Si ions in both the cases are analyzed for the determination of plasma parameters by comparing with FLYCHK simulations. The estimated plasma temperature and density are T c = 180 eV, n e = 7 × 1020 cm−3 and T c = 190 eV, n e = 4 × 1020 cm−3 for quartz and SiO2 aerogel foam, respectively. To measure the evolution of the plasma moving away from the targets, four identical ion collectors are placed at different angles (22.5, 30, 45, and 67.5°) from target normal. The angular distribution of the thermal ions are scaled as cosnθ with respect to target normal, where n = 3.8 and 4.8 for the foam and quartz, respectively. The experimental plasma volume measured from the ion collectors and shadowgraphy images are verified by a two-dimensional Eulerian radiative–hydrodynamic simulation (POLLUX code).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.A., Limpouch, J., Iskakov, A.B. & Nakano, H. (2002). Enhancement of X-ray line emission from plasmas produced by short high-intensity laser double pulses. Phys. Rev. E 65, 026403.Google Scholar
Boris, J.P. & Book, D.L. (1976). Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20, 397431.Google Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A. & Petryakov, V.M. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.CrossRefGoogle Scholar
Borisenko, N.G., Chaurasia, S., Dhareshwar, L.J., Gromov, A.I., Gupta, N.K., Leshma, P., Munda, D.S., Orekhov, A.S., Tripathi, S. & Merkuliev, Y.A. (2013). Laser study into and explanation of the direct-indirect target concept, in EPJ Web of Conf., vol. 59, 03014. EDP Sciences.Google Scholar
Bugrov, A.E., Gus'kov, S.Y., Rozanov, V.B., Burdonskii, I.N., Gavrilov, V.V., Gol'tsov, A.Y., Zhuzhukalo, E.V., Koval'skii, N.G., Pergament, M.I. & Petryakov, V.M. (1997). Interaction of a high-power laser beam with low-density porous media. J. Exp. Theor. Phys. 84, 497505.Google Scholar
Chaker, M., Pépin, H., Bareau, V., Lafontaine, B., Toubhans, I., Fabbro, R. & Farsi, B. (1988). Laser plasma X-ray sources for microlithography. J Appl. Phys. 63, 892899.Google Scholar
Chaurasia, S., Leshma, P., Murali, C.G., Borisenko, N.G., Munda, D.S., Orekhov, A., Gromov, A.I., Merkuliev, Y.A. & Dhareshwar, L.J. (2015). Studies on subcritical and overcritical density laser ablated TAC foam targets. Opt. Commun. 343, 15.CrossRefGoogle Scholar
Chaurasia, S., Leshma, P., Tripathi, S., Murali, C.G., Munda, D.S., Sharma, S.M., Kailas, S., Gupta, N.K. & Dhareshwar, L.J. (2010 a). Simultaneous measurement of particle velocity and shock velocity for megabar laser driven shock studies. BARC Newslett. 317, 1321.Google Scholar
Chaurasia, S., Tripathi, S., Leshma, P., Murali, C.G. & Pasley, J. (2013). Optimization of bremsstrahlung and characteristic line emission from aluminum plasma. Opt. Commun. 308, 169174.CrossRefGoogle Scholar
Chaurasia, S., Tripathi, S., Munda, D.S., Mishra, G., Murali, C.G., Gupta, N.K., Dhareshwar, L.J., Rossall, A.K., Tallents, G.J., Singh, R. & Kohli, D.K. (2010 b). Laser interaction with low-density carbon foam. Pramana 75, 11911196.Google Scholar
Chung, H.K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys. 1, 312.CrossRefGoogle Scholar
Courant, R., Isaacson, E. & Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243255.Google Scholar
Daido, H. (2002). Review of soft X-ray laser researches and developments. Rep. Prog. Phys. 65, 1513.Google Scholar
Eliezer, S. (2002). The Interaction of High-power Lasers with Plasmas. Bristol: IOP.Google Scholar
Fiedorowicz, H., Bartnik, A., Jarocki, R., Rakowski, R. & Szczurek, M. (2000). Enhanced X-ray emission in the 1-keV range from a laser-irradiated gas puff target produced using the double-nozzle setup. Appl. Phys. B 70, 305308.Google Scholar
Förstera, E., Gäbel, K. & Uschmanna, I. (1989). X-ray microscopy of laser-produced plasmas with the use of bent crystals. Laser Part. Beams 9, 135148.Google Scholar
Fournier, K.B., Constantin, C., Poco, J., Miller, M.C., Back, C.A., Suter, L.J., Satcher, J., Davis, J. & Grun, J. (2004). Efficient multi-keV X-ray sources from Ti-doped aerogel targets. Phys. Rev. Lett. 92, 165005.Google Scholar
Fournier, K.B., Satcher, J.H., May, M.J., Poco, J.F., Sorce, C.M., Colvin, J.D., Hansen, S.B., Maclaren, S.A., Moon, S.J., Davis, J.F. & Girard, F. (2009). Absolute X-ray yields from laser-irradiated germanium-doped low-density aerogels. Phys. Plasmas 16, 052703.Google Scholar
Grant, A. (2016). Foam mitigates key obstacle in quest for laser fusion. Phys. Today 69, 22.Google Scholar
Kaur, C., Chaurasia, S., Poswal, A.K., Munda, D.S., Rossall, A.K., Deo, M.N. & Sharma, S.M. (2017). K-shell X-ray spectroscopy of laser produced aluminum plasma. J. Quant. Spectrosc. Radiat. Transf. 187, 20.Google Scholar
Keiter, P.A., Comely, A., Morton, J., Tierney, H., Workman, J. & Taylor, M. (2008). Conversion efficiency of high-Z backlighter materials. Rev. Sci. Instrum. 79, 10E918.CrossRefGoogle ScholarPubMed
Krishnamurthy, M., Kundu, M., Bane, K., Lad, A.D., Singh, P.K., Chatterjee, G., Kumar, G.R. & Ray, K. (2015). Enhanced X-ray emission from nano-particle doped bacteria. Opt. Express 23, 1790917922.Google Scholar
Lewis, C.L.S. & Mcglinchey, J. (1984). Quasi-monocromatic, projection radiography of dense laser driven spherical targets. Opt. Commun. 53, 179186.Google Scholar
Limpouch, J., Borisenko, N.G., Demchenko, N.N., Gus’kov, S.Y., Kasperczuk, A., Khalenkov, A.M., Kondrashov, V.N., Krousky, E., Kuba, J., Masek, K. & Merkul'ev, Y.A. (2006). Laser absorption and energy transfer in foams of various pore structures and chemical compositions. Proc. J. Phys. IV 133, 57459.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Loupias, B., Perez, F., Benuzzi-Mounaix, A., Ozaki, N., Rabec, M. & Gloahec, L.E. (2009). Highly efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states. Laser Part. Beams 27, 601609.Google Scholar
Nishikawa, T., Nakano, H., Ahn, H., Uesugi, N. & Serikawa, T. (1997). X-ray generation enhancement from a laser-produced plasma with a porous silicon target. Appl. Phys. Lett. 70, 16531655.Google Scholar
Nishikawa, T., Nakano, H., Oguri, K., Uesugi, N., Nakao, M., Nishio, K. & Masuda, H. (2001). Nanocylinder-array structure greatly increases the soft X-ray intensity generated from femtosecond-laser-produced plasma. Appl. Phys. B 73, 185188.Google Scholar
O'neill, F., Turcu, I.C.E., Tallents, G.J., Dickerson, J., Lindsay, T., Goodhead, D.T., Stretch, A., Wharton, C.W. & Meldrum, R.A. (1989). A repetitive laser-plasma X-ray source for radiobiology research. Proc. SPIE 1140, X-Ray Instrumentation in Medicine and Biology, Plasma Physics, Astrophysics, and Synchrotron Radiation, Paris, France, 1232.Google Scholar
Pajonk, G.M., Rao, A.V., Sawant, B.M., Parvathy, N.N. & Sawant, B.M. (1997). Dependence of monolithicity and physical properties of TMOS silica aerogels on gel aging and drying conditions. J. Non-Cryst. Solids 209, 4050.Google Scholar
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Kumar, G.R. (2003). Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002.Google Scholar
Rao, A.V., Bhagat, S.D., Hirashima, H. & Pajonk, G.M. (2006). Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 300, 279285.Google Scholar
Rao, A.V., Kulkarni, M.M., Amalnerkar, D.P. & Seth, T. (2003). Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J. Non-Cryst. Solids 330, 187195.Google Scholar
Rao, A.V., Pajonk, G.M., Haranath, D. & Wagh, P.B. (1998). Effect of sol-gel processing parameters on optical properties of TMOS silica aerogels. J. Mater. Synth. Process. 6, 3748.Google Scholar
Rischel, C., Rousse, A., Uschmann, I., Albouy, P.A., Geindre, J.P., Audebert, P., Gauthier, J.C., Fröster, E., Martin, J.L. & Antonetti, A. (1997). Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490492.Google Scholar
Rosmej, O.N., Suslov, N., Martsovenko, D., Vergunova, G., Borisenko, N., Orlov, N., Rienecker, T., Klir, D., Rezack, K., Orekhov, A. & Borisenko, L. (2015). The hydrodynamic and radiative properties of low-density foams heated by X-rays. Plasma Phys. Control. Fusion 57, 094001.Google Scholar
Rossall, A.K., Gartside, L.M.R., Chaurasia, S., Tripathi, S., Munda, D.S., Gupta, N.K., Dhareshwar, L.J., Gaffney, J., Rose, S.J. & Tallents, G.J. (2010). X-ray back-lighter characterization for iron opacity measurements using laser-produced aluminium K-alpha emission. J. Phys. B, At. Mol. Opt. Phys. 15, 155403.Google Scholar
Shang, W., Yanga, J. & Dong, Y. (2013). Enhancement of laser to X-ray conversion with a low density gold target. Appl. Phys. Lett. 102, 094105.Google Scholar
Spitzer, L. Jr & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977.Google Scholar
Thompson, S.L. (1970). Improvements in the chart d radiation-hydrodynamic code i: analytic equations of state (No. SC-RR–70-28). Sandia Labs., Albuquerque, N. Mex.CrossRefGoogle Scholar
Xu, Y., Zhu, T., LI, S. & Yang, J. (2011). Beneficial effect of CH foam coating on X-ray emission from laser-irradiated high-Z material. Phys. Plasmas 18, 053301.Google Scholar