Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T18:43:57.691Z Has data issue: false hasContentIssue false

Volume ignition via time-like detonation in pellet fusion

Published online by Cambridge University Press:  10 April 2015

L.P. Csernai*
Affiliation:
Institute of Physics and Technology, University of Bergen, Bergen, Norway
D.D. Strottman
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
*
Address correspondence and reprint requests to: L.P. Csernai, Universitetet i Bergen Bergen, Hordaland Norway E-mail: [email protected]

Abstract

Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space–time dynamics of the burning of the Deuterium–Tritium fuel in laser-driven pellet fusion experiments. The initial “High foot” heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation-dominated processes both the interior, time-like burning front, and the surrounding space-like part of the front will be stable against Rayleigh–Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than 10 ps.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S., Ribeyre, X., Schurtz, G., Schmitt, A.J., Canaud, B., Betti, R. & Perkins, L.J. (2014). Shock ignition of thermonuclear fuel: principles and modelling. Nucl. Fusion 54, 054008/1–21.CrossRefGoogle Scholar
Casey, D.T., Smalyuk, V.A., Raman, K.S., Peterson, J.L., Berzak Hopkins, L., Callahan, D.A., Clark, D.S., Dewald, E.L., Dittrich, T.R., Haan, S.W., Hinkel, D.E., Hoover, D., Hurricane, O.A., Kroll, J.J., Landen, O.L., Moore, A.S., Nikroo, A., Park, H-S., Remington, B.A., Robey, H.F., Rygg, J.R., Salmonson, J.D., Tommasini, R. & Widmann, K. (2014). Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility. Phys. Rev. E 90, 011102(R)/1–5.CrossRefGoogle ScholarPubMed
Csernai, L.P. (1987). Detonation on a timelike front for relativistic systems. Zh. Eksp. Teor. Fiz. 92, 379386.Google Scholar
Csernai, L.P. (1994). Introduction to Relativistic Heavy Ion Collisions. Chichester: Wiley.Google Scholar
Csernai, L.P., Cheng, Y., Horvát, Sz., Magas, V.K., Strottman, D. & Zétényi, M. (2009). Flow analysis with 3-dim ultra-relativistic hydro. J. Phys. G 36 064032/1–8.CrossRefGoogle Scholar
Csernai, L.P., Strottman, D.D. & Anderlik, Cs. (2012). Kelvin–Helmholtz instability in high-energy heavy-ion collisions. Phys. Rev. C 85, 054901/1–8.CrossRefGoogle Scholar
Fernandez, J.C., Albright, B.J., Beg, F.N., Foord, M.E., Hegelich, B.M., Honrubia, J.J., Roth, M., Stephens, R.B. & Yin, L. (2014). Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 54, 054006/1–36.CrossRefGoogle Scholar
Floerchinger, S. & Wiedemann, U.A. (2014). Mode-by-mode fluid dynamics for relativistic heavy ion collisions. Phys. Lett. B 728, 407411.CrossRefGoogle Scholar
Hora, H. (2013). Extraordinary strong jump of increasing laser fusion gains experienced at volume ignition for combination with NIF experiments. Laser Part. Beams 31, 229232.CrossRefGoogle Scholar
Hora, H., Lalousis, P., Eliezer, S., Miley, G.H., Moustaizis, S. & Mourou, G. (2014 c). 10 kilotesla magnetic field confinement combined with ultra-fast laser accelerated plasma blocks for initiating fusion flames. Presentation at the Physics-Congress Canberra, Australia, 11 December 2014, arXiv: 1412.4190.Google Scholar
Hora, H., Lalousis, P. & Moustaizis, S. (2014 b). Fiber ICAN laser with exawatt-picosecond pulses for fusion without nuclear radiation problems. Laser Part. Beams 32, 6368.CrossRefGoogle Scholar
Hora, H., Miley, G., Lalousus, P., Moustaizis, S., Clayton, K., Jonas, D. (2014 a). Efficient generation of fusion flames using PW-ps laser pulses for ultrahigh acceleration of plasma blocks by nonlinear (ponderomotive) forces. IEEE Trans. Plasma Sci. 42, 640644.CrossRefGoogle Scholar
Hu, S.X., Collins, L.A., Boehly, T.R., Kress, J.D., Goncharov, V.N. & Skupsky, S. (2014). First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. Phys. Rev. E 89, 043105/1–10.CrossRefGoogle ScholarPubMed
Hu, S.X., Collins, L.A., Goncharov, V.N., Boehly, T.R., Epstein, R., McCrory, R.L. & Skupsky, S. (2014). First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications. Phys. Rev. E 90, 033111. (10pp.).CrossRefGoogle ScholarPubMed
Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., SalmonsonJ.D., P.T. J.D., P.T., Springer, P.T. & Tommasini, R. (2014). Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343349.CrossRefGoogle Scholar
Kasotakis, G., Cicchitelli, L., Hora, H. & Stening, R.J. (1989). Volume compression and volume ignition of laser driven fusion pellets. Laser Part. Beams 7, 511520.CrossRefGoogle Scholar
Lalousis, P., Hora, H. & Moustaizis, S. (2014). Optimized boron fusions with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration. Laser Part. Beams 32, 409411.CrossRefGoogle Scholar
Park, H.-S., Hurricane, O.A., Callahan, D.A., Casey, D.T., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Le Pape, S., Ma, T., Patel, P.K., Remington, B.A., Robey, H.F., Salmonson, J.D. & Kline, J.L. (2014). High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility. Phys. Rev. Lett. 112, 055001/1–5.CrossRefGoogle ScholarPubMed
Taub, A.H. (1948). Relativistic Rankine–Hugoniot equations. Phys. Rev. 74, 328334.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1969). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Moscow: Nauka.Google Scholar