Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T19:56:20.909Z Has data issue: false hasContentIssue false

Two-fluid computations of plasma block dynamics for numerical analyze of rippling effect

Published online by Cambridge University Press:  05 December 2005

S. JABŁONSKI
Affiliation:
School of Quantitative Methods and Mathematical Sciences University of Western Sydney, Penrith South, Australia Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
H. HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
S. GŁOWACZ
Affiliation:
School of Quantitative Methods and Mathematical Sciences University of Western Sydney, Penrith South, Australia Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
J. BADZIAK
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
YU CANG
Affiliation:
School of Quantitative Methods and Mathematical Sciences University of Western Sydney, Penrith South, Australia Institute of Physics, Chinese Academy of Sciences, Beijing, China
F. OSMAN
Affiliation:
School of Quantitative Methods and Mathematical Sciences University of Western Sydney, Penrith South, Australia

Abstract

In this paper the results of numerical computations of rippling smoothing basing on the broad-band laser irradiation method for the laser intensity range 1016−1017 W/cm2 and short-pulse (<10 ps) interaction with plasma are described.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Glovacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2004a). Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30423047.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Paris, P., Wolowski, J., Kraska, J., Laska, L., Rohlena, K., Hora, H. (2004b). Production of ultrahigh ion current densities at Skin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys., P., Wolowski, J. & Hora, H. (2005). Laser driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Bauer, D. (2003). Plasma formation through field ionization intense laser-matter interaction. Laser Part. Beams 21, 489495.Google Scholar
Boreham, B.W., Hora, H., Aydin, M., Eliezer, S., Goldsworthy, M.P., Gu Min, G.A.K., Lalousis, P., Stening, R.J., Szichman, H., Luther-Davies, B., Baldwin, K.G.H., Maddever, R.A.M. & Rode, A.V. (1997). M Beam smoothing and temporal effects: optimized preparation of laser beam for direct drive inertial confinement fusion. Laser Part. Beams 15, 277295.Google Scholar
Deng, XIMIN Lian, Xiangshun, Chen Zezun, Yu Wenyan, &Ma Renyong (1986a). Uniform illumination for large targets using a lens array. Appl. Optics 25, 377381.Google Scholar
Deng, Ximin Lian, Xiangshun, Chen Zezun, Yu Wenyan, &Ma Renyong (1986b). Fly-Eye method for Smoothing of Laser Beams. Acta Optica Sinica 2, 97108.Google Scholar
Deutsch, C. (2004). Penetration of intense charge particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Glowacz, S., Badziak, J., Jablonski, S. & Hora, H. (2004). Numerical modelling of production of ultrahigh-current-density ion beams by short-pulse laser-plasma interaction. Czech. J. Phys. 54, C460C467.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, in press.Google Scholar
Hoffmann, D.H.H., Blazevic, N.I.P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H. & Aydin, M. (1992). Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods. Phys. Rev. A45, 61236126.Google Scholar
Hora, H. & Aydin, M. (1999). Increased Gain for ICF with red light at suppression of stochastic pulsation by smoothing. Laser Part. Beams 17, 209215.Google Scholar
Hora, H., Osman, F., Höpfl, R., Badziak, J., Parys, P., Wolowski, J., Skala, J., Ullschmied, J., Wolowski, J., Woryna, E., Woryna, W., Boody, F., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2002). Skin depth theory explaining anomalous picosecond laser plasma interaction. Czech J. Phys. 52, D349D361.Google Scholar
Kato, Y., Mima., K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka., M. & Yamanaka, Y. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.Google Scholar
Lehmberg, R.H. & Obenschain, S.P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Comm. 46, 2731.Google Scholar
Maddever, R.A.M., Luther-Davies, B. & Dragila, R. (1990). Pulsation of 1 omega0 and 2 omega0 emission from laser-produced plasmas. I. Experiment. Phys. Rev. A41, 2154.Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Osman, F. & Hora, H. (2004). Suppression of instabilities and stochastic pulsation at laser-plasma interaction by beam smoothing. Am. J. Appl. Sci. 1, 7682Google Scholar
Ramirez, J., Ramis, R. & Sanz, J. (2004). One-dimensional model for a laser-ablated slab under acceleration. Laser Interact. Related Plasma Phenom. 22, 183188.Google Scholar