Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T06:35:20.575Z Has data issue: false hasContentIssue false

Two-dimensional ion emission from laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

G. J. Tallents
Affiliation:
Laser Physics Laboratory, Department of Engineering Physics, Research School of Physical Sciences, The Australian National University, Canberra, ACT 2600 Australia

Abstract

The expansion of laser-produced plasmas in two-dimensions is examined analytically using an asymptotic (time→∞) isothermal self-similar model. The ion emission velocity and energy spectra are calculated and expressions given for the number and energy of expanding ions as a function of angle to the target. By relating the total ion kinetic energy of expansion to the temperature of the initial plasma, it is shown that ion probe signals give a measure of the initial plasma temperature. The model is extended to a plasma with two initial temperatures (a ‘hot’ component and a ‘cold’ component) and it is shown that the ion energy spectra here can be used to deduce the initial temperatures of the ‘hot’ and ‘cold’ ions and the relative number of the ‘hot’ ions to the ‘cold’ ions. The results are used to interpret data from an array of ion probes (at different angles to the target) for a plasma produced by irradiating a 25 μm thick nickel foil with a ∼20 ρs neodymium laser pulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anthes, J. P., Gusinow, M. A. & Mutzen, K. M. 1978 Phys. Rev. Lett. 41, 1300.CrossRefGoogle Scholar
Burgess, M. D. T., Dragila, R., Luther-Davies, B., Nugent, K. A. & Tallents, G. J., 1983 Laser Interaction and Related Plasma Phenomena (ed. Hora, M. and Miley, G. M.), Vol. 6, New York, Plenum. in press.Google Scholar
Dawson, J. M. 1964 Phys. Fluids., 7, 981.CrossRefGoogle Scholar
Dawson, J., Kaw, P. & Green, B. 1969 Phys. Fluids, 12, 875.CrossRefGoogle Scholar
Decoste, R., Bodner, S. E., Ripin, B. H., McLean, E. A., Obenschain, S. P. & Armstrong, C. M. 1979 Phys. Rev. Lett. 42, 1673.CrossRefGoogle Scholar
Demtroder, W. & Jantz, W. 1970 Plasma Phys. 12, 691.CrossRefGoogle Scholar
Denavit, J. 1979 Phys. Fluids, 22, 1384.CrossRefGoogle Scholar
Dragila, R., Janovsky, V. & Neuberg, J. 1980 Czech. J. Phys. B30, 429.CrossRefGoogle Scholar
Farnsworth, A. V., Widner, M. M., Clauser, M. J., McDaniel, P. J. & Lonngren, K. E. 1979 Phys. Fluids,22, 859.Google Scholar
Haught, A. F. & Polk, D. H. 1966 Phys. Fluids, 9, 2047.CrossRefGoogle Scholar
Haught, A. F. & Polk, D. H. 1970 Phys. Fluids, 31, 2825.CrossRefGoogle Scholar
Hora, H. 1971 Laser Interaction and Related Plasma Phenomena (ed. Schwarz, H. J. and Hora, H.), Vol. 1, pp. 365–82. New York, Plenum.CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas pp. 5871. New York, Wiley.Google Scholar
Hunt, J. T., Glaze, J. A., Simmons, W. W. & Renard, P. A. 1978 Appl. Opt. 17, 2053.CrossRefGoogle Scholar
Jacoby, D., Pert, G. J., Ramsden, S. A., Shorrock, L. D. & Tallents, G. J. 1981 Opt. Commun. 37, 193.CrossRefGoogle Scholar
Jacoby, D., Pert, G. J., Shorrock, L. D. & Tallents, G. J. 1982 J. Phys. B, 15, 3557.CrossRefGoogle Scholar
Kidder, R. E. 1974 Nucl. Fus. 14, 5360.CrossRefGoogle Scholar
Luther-Davies, B. 1977 Opt. Commun. 23, 98.CrossRefGoogle Scholar
Murdoch, J. W., Kilkenny, J. D., Gray, D. R. & Toner, W. T. 1981 Phys. Fluids, 24, 2107.CrossRefGoogle Scholar
Opower, H. & Press, W. 1966 Z. Naturforsch. 21a, 344.CrossRefGoogle Scholar
Pearlman, J. S. 1977 Rev. Sci. Instrum. 48, 1064.CrossRefGoogle Scholar
Pelah, I. 1976 Phys. Lett. 59, 348.CrossRefGoogle Scholar
Pert, G. J. 1974 Plasma. Phys. 16, 1051.CrossRefGoogle Scholar
Pert, G. J. 1976 J. Phys. B9, 3301.Google Scholar
Pert, G. J. 1979 J. Phys. B12, 2067.Google Scholar
Pert, G. J. 1980 J. Fluid Mech. 100, 257.CrossRefGoogle Scholar
Pert, G. J. & Tallents, G. J. 1981 J. Phys. B14, 1525.Google Scholar
Priedhorsky, W., Lier, D., Day, R. & Gerke, D. 1981 Phys. Rev. Lett. 47, 1661.CrossRefGoogle Scholar
Puell, H. 1970 Z. Naturforsch. 259, 1807.Google Scholar
Slater, D. C. et al. 1981 Phys. Rev. Lett. 46, 1199.CrossRefGoogle Scholar
Tallents, G. J. 1980 Plasma Phys. 22, 709.CrossRefGoogle Scholar
Tallents, G. J. 1981 Opt. Commun. 37, 108 (erratum, 38, 448).CrossRefGoogle Scholar
Tallents, G. J. & Luther-Davies, B. 1982 J. Phys. D 15, L125.Google Scholar
True, M. A., Albritton, J. R. & Williams, E. A. 1981 Phys. Fluids, 24, 1885.CrossRefGoogle Scholar
Wickens, L. M., Allen, J. E. & Rumsby, P. T. 1978 Phys. Rev. Lett. 41, 243.CrossRefGoogle Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1967 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol 1, pp. 101–6. New York, Academic.Google Scholar