Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:43:19.442Z Has data issue: false hasContentIssue false

The truncated amplified spontaneous emission pulses in KrF excimer laser by using timeshare quenching

Published online by Cambridge University Press:  24 March 2014

P. Y. Du
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
Z. W. Lu*
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
D. Y. Lin
Affiliation:
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Z. W. Lu, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: [email protected]

Abstract

In order to achieve the truncated amplified spontaneous emission pulse, the method of timeshare quenching was proposed in this paper. When the original pulse of the amplified spontaneous emission is 16.72 ns, the obtained best results show that the pulse width is truncated to 2.48 ns, and the shortening ratio is approximately 6.7. By analyzing the 12 acquisition results of the continuous amplified spontaneous emission truncation, 2.59 ± 0.05 ns amplified spontaneous emission pulse was obtained. The experimental results showed that the stability of the truncated pulse width is well. This method is applicable to truncate the ASE pulse in KrF excimer laser. It is significantly to the research of the inertial confinement fusion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. (2009). Laser driven inertial fusion: the physical basis of current and recently proposed ignition experiments. Plasma Phys. Contr. Fusion 51, 124029.Google Scholar
Allen, L. & Peters, G.I. (1971). Amplified spontaneous emission III. Intensity and saturation. J. Phys. A: Gen. Phys. 4, 564573.Google Scholar
Ewing, J.J., Haas, R., Swingle, J., George, E. & Krupke, W.F. (1979). Optical pulse compressor systems for laser fusion. IEEE J. Quant. Electron. 15, 368379.Google Scholar
Foldes, I.B. & Szatmari, S. (2008). On the use of KrF lasers for fast ignition. Laser Part. Beams 26, 575582.Google Scholar
Hariri, A. & Sarikhani, S. (2012). Theoretical application of z-dependent gain coefficient to describe amplified spontaneous emission. Opt. Lett. 37, 11271129.CrossRefGoogle ScholarPubMed
Hegeler, F., Myers, M.C., Wolford, M.F., Sethian, J.D., Burns, P., Friedman, M., Giuliani, J.L., Jaynes, R., Albert, T. & Parish, J. (2008). The Electra KrF laser system. J. Phys. 112, 3235.Google Scholar
Lehmberg, R.H., Guiliani, J.L. & Schmitt, A.J. (2009). Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers. J. Appl. Phys. 106, 023103.Google Scholar
Lehmberg, R.H. & Giuliani, J.L. (2003). Simulation of amplified spontaneous emission in high gain KrF laser amplifiers. J. Appl. Phys. 94, 3143.Google Scholar
Lowenthal, D., Ewing, J., Center, R., Mumola, P., Grossman, W., Olson, N. & Shannon, J. (1981). Conceptual design of an angular multiplexed 50 kJ KrF amplifier for ICF. IEEE J. Quant. Electron 17, 18611870.Google Scholar
Obenschain, S.P., Bodner, S.E., Colombant, D., Gerber, K., Lehmberg, R.H., McLean, E.A., Mostovych, A.N., Pronko, M.S., Pawley, C.J., Schmitt, A.J., Sethian, J.D., Serlin, V., Stamper, J.A., Sullian, C.A., Dahlburg, J.P., Gardner, J.H., Chan, Y., Deniz, A.V., Hardgrove, J. & Lehecka, T. (1996). The Nike KrF laser facility: Performance and initial target experiments. Phys. Plasmas 3, 20982107.CrossRefGoogle Scholar
Okuda, I., Tomie, T. & Owadano, Y. (2000). A time-dependent ASE calculation for transient gain enhancement of picosecond pulses in a large-aperture KrF laser amplifier. Appl. Phys. B 70, 737739.CrossRefGoogle Scholar
Owadano, Y., Okuda, I., Matsumoto, Y., Matsushima, I., Koyama, K., Tomie, T. & Yano, M. (1993). Performance of the ASHURA KrF laser and its upgrading plan. Laser Part. Beams 11, 347351.Google Scholar
Perkins, L.J., Betti, R., LaFortune, K.N. & Williams, W.H. (2009). Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility. Phys. Rev. Lett. 103, 045004.Google Scholar
Peters, G.I. & Allen, L. (1972). Amplified spontaneous emission. IV. Beam divergence and spatial coherence. J. Phys. A: Gen. Phys. 5, 546554.Google Scholar
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S. & Weber, S. (2009). Shock ignition: an alternative scheme for HiPER. Plasma Phys. Contr. Fusion 51, 015013.Google Scholar
Schmitt, J., Bates, J.W., Obenschain, S.P., Zalesak, S.T. & Fyfe, D.E. (2010). Shock ignition target design for inertial fusion energy. Phys. Plasmas 17, 042701.Google Scholar
Sethian, J.D., Friedman, M., Giuliani, J., Lehmberg, R.H., Myers, M., Obenschain, S.P., Wolford, M., Kepple, P., Hegeler, F. & Swanekamp, S. (2003). Electron beam pumped KrF lasers for fusion energy. Phys. Plasmas 10, 21422146.CrossRefGoogle Scholar
Sethian, J.D., Friedman, M., Giuliani, J., Lehmberg, R. & Myers, M. (2001). Fusion electra: A krypton fluoride laser for fusion energy. Presented at the Inertial Fusion Sciences and Applications 2001 conference, Kyoto, Japan. September 10–15, 2001.Google Scholar
Shaw, M.J., Bailly-Salins, R., Edwards, B., Harvey, E.C., Hirst, G.J., Hooker, C.J., Key, M.H., Kidd, A.K., Lister, J.M.D. & Ross, I.N. (1993). Development of high-performance KrF and Raman laser facilities for inertial confinement fusion and other applications. Laser Part. Beams 11, 331346.Google Scholar
Shaw, M.J., Ross, I.N., Hooker, C.J., Dodson, J.M., Hirst, G.J., Lister, J.M.D., Divall, E.J., Kidd, A.K., Hancock, S., Damerell, A.R. & Wyborn, B.E. (1999). Ultrahigh-brightness KrF laser system for fast ignition studies. Fusion Engin. Desig. 44, 209214.Google Scholar
Takahashi, E., Losev, L.L., Matsumoto, Y., Okuda, I., Kato, S., Aota, T. & Owadano, Y. (2005). 1 ps, 3 mJ KrF laser pulses generated using stimulated Raman scattering and fast Pockels cell. Opt. Commun. 247, 149152.Google Scholar
Takahashi, E., Losev, L.L., Matsumoto, Y., Okuda, I., Matsushima, I., Kato, S., Nakamurac, H., Kuwaharad, K. & Owadano, Y. (2003). KrF laser picosecond pulse source by stimulated scattering processes. Opt. Commun. 215, 163167.Google Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritshii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Yu., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.Google Scholar