Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:50:10.193Z Has data issue: false hasContentIssue false

Trapping of electromagnetic radiation in self-generated and preformed cavities

Published online by Cambridge University Press:  22 August 2013

Shixia Luan*
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Wei Yu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Jingwei Wang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
Mingyang Yu
Affiliation:
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China; Institute for Theoretical Physics I, Ruhr University, Bochum, Germany
Suming Weng
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
Masakatsu Murakami
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
Jingwei Wang
Affiliation:
Institute of Laser Engineering, Osaka University, Osaka, Japan
Han Xu
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
Hongbin Zhuo
Affiliation:
College of Science, National University of Defense Technology, Changsha, China
*
Address correspondence and reprint requests to: Shixia Luan, No.390, Qinghe Road, Jiading, Shanghai, 201800, China. E-mail: [email protected]

Abstract

Laser light trapping in cavities in near-critical density plasmas is studied by two-dimensional particle-in-cell simulation. The laser ponderomotive force can create in the plasma a vacuum cavity bounded by a thin overcritical-density wall. The laser light is self-consistently trapped as a half-cycle electromagnetic wave in the form of an oscillon-caviton structure until it is slowly depleted through interaction with the cavity wall. When the near-critical density plasma contains a preformed cavity, laser light can become a standing wave in the latter. The trapped light is characterized as multi-peak structure. The overdense plasma wall around the self-generated and preformed cavities induced by the laser ponderomotive force is found to be crucial for pulse trapping. Once this wall forms, the trapped pulse can hardly penetrate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Borghesi, M., Bulanov, S., Campbell, D.H., Clarke, R.J., Esirkepov, T.Zh., Galimberti, M., Gizzi, L.A., Mackinnon, A.J., Naumova, N.M., Pegoraro, F., Ruhl, H., Schiavi, A. & Willi, O. (2002). Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys. Rev. Lett. 88, 135002.CrossRefGoogle ScholarPubMed
Borghesi, M., Mackinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A. & Meyer-Ter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed plasma. Phys. Rev. Lett. 78, 879882.CrossRefGoogle Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.CrossRefGoogle ScholarPubMed
Bulanov, S.V. & Pegoraro, F. (2002). Stability of a mass accreting shell expanding in a plasma. Phys. Rev. E 65, 066405.CrossRefGoogle ScholarPubMed
Bulanov, S.V., Esirkepov, T.Zh., Naumova, N.M., Pegoraro, F. & Vshivkov, V.A. (1999). Solitonlike electromagnetic waves behind a superintense laser pulse in a plasma. Phys. Rev. Lett. 82, 34403443.CrossRefGoogle Scholar
Cheung, P.Y., Wong, A.Y., Darrow, C.B. & Qian, S.J. (1982). Simultaneous observation of caviton formation, spiky turbulence, and electromagnetic radiation. Phys. Rev. Lett. 48, 13481351.CrossRefGoogle Scholar
Esirkepov, T.Zh., Kamenets, F.F., Bulanov, S.V. & Naumova, N.M. (1998). Low-frequency relativistic electromagnetic solitons in collisionless plasmas. JETP Lett. 68, 3641.CrossRefGoogle Scholar
Esirkepov, T., Nishihara, K., Bulanov, S.V. & Pegoraro, F. (2002). Three-dimensional relativistic electromagnetic subcycle solitons. Phys. Rev. Lett. 89, 275002.CrossRefGoogle ScholarPubMed
Farina, D., Lontano, M. & Bulanov, S.V. (2000). Relativistic solitons in magnetized plasmas. Phys. Rev. E 62, 41464151.CrossRefGoogle ScholarPubMed
Kruer, W.L. & Estabrook, K. (1985). J × B heating by very intense laser light. Phys. Fluids 28, 430432.CrossRefGoogle Scholar
Kuznetsov, A.V., Esirkepov, T.Zh., Kamenets, F.F. & Bulanov, S.V. (2001). Efficiency of ion acceleration by a relativistically strong laser pulse in an underdense plasma. Plasma Phys. Rep. 27, 211220.CrossRefGoogle Scholar
Luan, S.X., Yu, W., Murakami, M., Zhuo, H.B., Yu, M.Y., Ma, G.J. & Mima, K. (2012 a). Time evolution of solid-density plasma during and after irradiation by a short, intense laser pulse. Laser Part. Beams 30, 407414.CrossRefGoogle Scholar
Luan, S.X., Yu, W., Xu, W.W., Murakami, M., Zhuo, H.B., Wang, J.W., Wang, X. & Wu, H.C. (2012 b). Model study on laser interaction with near-critical density plasma. Appl. Phys. B 108, 875882.CrossRefGoogle Scholar
Luan, S.X., Yu, W., Yu, M.Y., Ma, G.J., Zhang, Q.J., Sheng, Z.M. & Murakami, M. (2011). Analytical model for interaction of short intense laser pulse with solid target. Phys. Plasmas 18, 042701.CrossRefGoogle Scholar
Luan, S.X., Zhang, Q.J. & Sheng, Z.M. (2008). The formation of relativistic electromagnetic solitons in plasma Bragg gratings induced by two counter-propagating laser pulses. Appl. Phys. B 93, 793799.CrossRefGoogle Scholar
Mourou, G., Chang, Z., Maksimchuk, A., Nees, J., Bulanov, S.V., Yu, V., Bychenkov, T., Esirkepov, Zh., Naumova, N.M., Pegoraro, F. & Ruhl, H. (2002). On the design of experiments for the study of relativistic nonlinear optics in the limit of single-cycle pulse duration and single-wavelength spot size. Plasma Phys. Rep. 28, 1227.CrossRefGoogle Scholar
Nakamura, T. & Mima, K. (2008). Magnetic-Dipole Vortex Generation by Propagation of ultraintense and ultrashort laser pulses in moderate-density plasmas. Phys. Rev. Lett. 100, 205006.CrossRefGoogle ScholarPubMed
Naumova, N.M., Bulanov, S.V., Esirkepov, T.Zh., Farina, D., Nishihara, K., Pegoraro, F., Ruhl, H. & Sakharov, A.S. (2001). Formation of electromagnetic postsolitons in plasmas. Phys. Rev. Lett. 87, 185004.CrossRefGoogle Scholar
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond Lasers. Science 264, 917924.CrossRefGoogle ScholarPubMed
Sanchez-Arriaga, G. & Lefebvre, E. (2011 a). Two-dimensional s-polarized solitary waves in relativistic plasmas. I. The fluid plasma model. Phys. Rev. E 84, 036403.CrossRefGoogle ScholarPubMed
Sanchez-Arriaga, G. & Lefebvre, E. (2011 b). Two-dimensional s-polarized solitary waves in plasmas. II. Stability, collisions, electromagnetic bursts, and post-soliton evolution. Phys. Rev. E 84, 036404.CrossRefGoogle ScholarPubMed
Sarri, G., Singh, D.K., Davies, J.R., Fiuza, F., Lancaster, K.L., Clark, E.L., Hassan, S., Jiang, J., Kageiwa, N., Lopes, N., Rehman, A., Russo, C., Scott, R.H.H., Tanimoto, T., Najmudin, Z., Tanaka, K.A., Tatarakis, M., Borghesi, M. & Norreys, P.A. (2010). Observation of postsoliton expansion following laser propagation through an underdense plasma. Phys. Rev. Lett. 105, 175007.CrossRefGoogle ScholarPubMed
Sentoku, Y., Esirkepov, T.Zh., Mima, K., Nishihara, K., Califano, F., Pegoraro, F., Sakagami, H., Kitagawa, Y., Naumova, N.M. & Bulanov, S.V. (1999). Bursts of superreflected laser light from inhomogeneous plasmas due to the generation of relativistic solitary waves. Phys. Rev. Lett. 83, 34343437.CrossRefGoogle Scholar
Stenflo, L. & Yu, M.Y. (1989). An exact nonlinear cylindrical surface wave solution. Phys. Fluids B 1, 15431544CrossRefGoogle Scholar
Stenflo, L. & Yu, M.Y. (1996). Origin of oscillons. Nature 384, 224.CrossRefGoogle Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.CrossRefGoogle Scholar
Umstadter, D. (2003). Relativistic laser–plasma interactions. J. Phys. D 36, 151165.CrossRefGoogle Scholar
Wang, J.W., Yu, W., Yu, M.Y., Lei, A.L., Wang, X., Senecha, V.K., Wang, X.G., Murakami, M. & Mima, K. (2010). Guiding of intense laser pulse in uniform plasmas and preformed plasma channels. Phys. Plasmas 17, 103109.CrossRefGoogle Scholar
Wang, W.M., Sheng, Z.M., Li, Y.T., Chen, L.M., Dong, Q.L., Lu, X., Ma, J.L. & Zhang, J. (2011). Studies on the mechanisms of powerful terahertz radiations from laser plasmas. Chin. Opt. Lett. 9, 110002.Google Scholar
Wang, X., Yu, W., Yu, M.Y., Xu, H., Wang, J.W. & Yuan, X. (2009). Simple model for wakefield excitation by intense short-pulse laser in underdense plasma. Phys. Plasmas. 16, 053107.CrossRefGoogle Scholar
Weber, S., Lontano, M., Passoni, M., Riconda, C. & Tikhonchuk, V.T. (2005). Electromagnetic solitons produced by stimulated Brillouin pulsations in plasmas. Phys. Plasmas 12, 112107.CrossRefGoogle Scholar
Willingale, L., Nagel, S.R., Thomas, A.G.R., Bellei, C., Clarke, R.J., Dangor, A.E., Heathcote, R., Kaluza, M.C., Kamperidis, C., Kneip, S., Krushelnick, K., Lopes, N., Mangles, S.P. D., Nazarov, W., Nilson, P.M. & Najmudin, Z. (1997). Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett. 102, 125002.Google Scholar
Willingale, L., Nilson, P.M., Thomas, A.G.R., Bulanov, S.S., Maksimchuk, A., Nazarov, W., Sangster, T.C., Stoeckl, C. & Krushelnick, K. (2011). High-power, kilojoule laser interactions with near-critical density plasma. Phys. Plasmas 18, 056706.CrossRefGoogle Scholar
Wong, A.Y., Leung, P. & Eggleston, D. (1977). Particle-cavition interactions. Phys. Rev. Lett. 39, 14071411.CrossRefGoogle Scholar
Yu, M.Y., Shukla, P.K. & Spatschek, K.H. (1978). Localization of high-power laser pulses in plasmas. Phys. Rev. A 18, 15911596.CrossRefGoogle Scholar
Zhu, B., Wu, Y.C., Dong, K.G., Hong, W., Teng, J., Zhou, W.M., Cao, L.F. & Gu, Y.Q. (2012). Observation of a strong correlation between electromagnetic soliton formation and relativistic self-focusing for ultra-short laser pulses propagating through an under-dense plasma. Phys. Plasmas 19, 102304.CrossRefGoogle Scholar