Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T02:59:14.998Z Has data issue: false hasContentIssue false

Trapping and acceleration of short electron bunches in the laser wakefields

Published online by Cambridge University Press:  04 September 2017

N.E. Andreev*
Affiliation:
Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny 141700, Russia
V.E. Baranov
Affiliation:
Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
H.H. Matevosyan
Affiliation:
Institute of Radiophysics and Electronics of NAS RA, Ashtarak 0203, Armenia
*
Address correspondence and reprint requests to: N.E. Andreev, Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia. E-mail: [email protected]

Abstract

The processes of trapping, compression, and acceleration of short electron bunches externally injected into the wakefields generated by intense femtosecond laser pulse in a plasma channel are analyzed and optimized. The influence of the laser non-linear dynamics to the longitudinal bunch compression and impact of the beam loading effect (self-action of the bunch charge) to the finite energy and the energy spread of the accelerated electrons are investigated. The limitations to the charge of accelerated electron bunch determined by the requirement of a small width of the electron energy distribution of the bunch are found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akopyan, E., Matevosyan, H., Gevorkyan, R. & Oganesyan, A. (2002). Wakefield potential of a charged particle in non-isothermal plasma. Izv. Natsional'noi Akad. Nauk Armenii, Fiz. [Proc. Natl. Acad. Sci. Armenia, Phys.] 37, 8690.Google Scholar
Andreev, N., Baranov, V., Cros, B., Fortov, V., Kuznetsov, S., Maynard, G. & Mora, P. (2011 a). Electron bunch compression and acceleration in the laser wakefield. Nucl. Instrum. Methods Phys. Res., Sect. A 653, 6671. Superstrong 2010.CrossRefGoogle Scholar
Andreev, N. & Kuznetsov, S. (2008). Laser wakefield acceleration of finite charge electron bunches. IEEE Trans. Plasma Sci. 36, 17651772.Google Scholar
Andreev, N.E., Baranov, V.E., Cros, B., Maynard, G., Mora, P. & Veysman, M.E. (2013). Laser wakefield compression and acceleration of externally injected electron bunches in guiding structures. J. Plasma Phys. 79, 143152.Google Scholar
Andreev, N.E., Gorbunov, L.M. & Kuznetsov, S.V. (1996). Energy spectra of electrons in plasma accelerators. IEEE Trans. Plasma Sci. 24, 448452.CrossRefGoogle Scholar
Andreev, N.E., Gorbunov, L.M., Mora, P. & Ramazashvili, R.R. (2007). Filamentation of ultrashort laser pulses propagating in tenuous plasmas. Phys. Plasmas 14, 083104.Google Scholar
Andreev, N.E., Kirsanov, V.I. & Gorbunov, L.M. (1995). Stimulated processes and self-modulation of a short intense laser pulse in the laser wakefield accelerator. Phys. Plasmas 2, 25732582.CrossRefGoogle Scholar
Andreev, N.E. & Kuznetsov, S.V. (2000). Laser wakefield acceleration of short electron bunches. IEEE Trans. Plasma Sci. 28, 12111217.Google Scholar
Andreev, N.E. & Kuznetsov, S.V. (2003). Guided propagation of short intense laser pulses and electron acceleration. Plasma Phys. Control. Fusion 45, A39.CrossRefGoogle Scholar
Andreev, N.E., Kuznetsov, S.V., Cros, B., Fortov, V.E., Maynard, G. & Mora, P. (2011 b). Laser wakefield acceleration of supershort electron bunches in guiding structures. Plasma Phys. Control. Fusion 53, 014001.Google Scholar
Andreev, N.E., Kuznetsov, S.V. & Pogorelsky, I.V. (2000). Monoenergetic laser wakefield acceleration. Phys. Rev. ST Accel. Beams 3, 021301.CrossRefGoogle Scholar
Ferrario, M., Katsouleas, T.C., Serafini, L. & Zvi, I.B. (2000). Adiabatic plasma buncher. IEEE Trans. Plasma Sci. 28, 11521158.Google Scholar
Gaur, B., Rawat, P. & Purohit, G. (2016). Effect of self-focused cosh Gaussian laser beam on the excitation of electron plasma wave and particle acceleration. Laser Part. Beams 34, 621630.CrossRefGoogle Scholar
Grebenyuk, J., Mehrling, T., Tsung, F.S., Floettman, K. & Osterhoff, J. (2012). Simulations of laser-wakefield acceleration with external electron-bunch injection for REGAE experiments at DESY. AIP Conf. Proc. 1507, 688692.Google Scholar
Katsouleas, T. (2004). Progress on plasma accelerators: from the energy frontier to tabletops. Plasma Phys. Control. Fusion 46, B575.Google Scholar
Katsouleas, T., Wilks, S., Chen, P., Dawson, J.M. & Su, J.J. (1987). Beam loading in plasma accelerators. Part. Accel. 22, 8199.Google Scholar
Katsouleas, T.C., Clayton, C.E., Serafini, L., Pellegrini, C., Joshi, C., Dawson, J. & Castellano, P. (1996). A plasma klystron for generating ultra-short electron bunches. IEEE Trans. Plasma Sci. 24, 443447.CrossRefGoogle Scholar
Kuznetsov, S.V. (2012 a). Acceleration of electron bunches injected into a wake wave. Plasma Phys. Rep. 38, 116125.Google Scholar
Kuznetsov, S.V. (2012 b). Acceleration of nonmonoenergetic electron bunches injected into wakefield wave. JETP 115, 171183.Google Scholar
Kuznetsov, S.V. (2016 a). Generation of short electron bunches by a laser pulse crossing a sharp boundary of inhomogeneous plasma. JETP 123, 169183.CrossRefGoogle Scholar
Kuznetsov, S.V. (2016 b). Laser-pulse-induced generation of attosecond electron bunches on crossing the vacuum-plasma boundary. Tech. Phys. Lett. 42, 740742.Google Scholar
Leemans, W. & Esarey, E. (2009). Laser-driven plasma-wave electron accelerators. Phys. Today 62, 4449.Google Scholar
Nersisyan, H.B. & Matevosyan, H.H. (2010). Parametric excitation of plasma waves by an electron bunch in the presence of intense electromagnetic radiation. Armenian J. Phys. 3, 164177.Google Scholar
Pugacheva, D.V. & Andreev, N.E. (2016). Precession dynamics of the relativistic electron spin in laser-plasma acceleration. Quantum Electron. 46, 88.CrossRefGoogle Scholar
Rechatin, C., Davoine, X., Lifschitz, A., Ismail, A.B., Lim, J., Lefebvre, E., Faure, J. & Malka, V. (2009). Observation of beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 103, 194804.Google Scholar
Reitsma, A., Trines, R. & Goloviznin, V. (2000). Energy spread in plasma-based acceleration. IEEE Trans. Plasma Sci. 28, 11501154.Google Scholar
Rossi, A., Anania, M., Bacci, A., Belleveglia, M., Bisesto, F., Chiadroni, E., Cianchi, A., Curcio, A., Gallo, A., Giovenale, D.D., Pirro, G.D., Ferrario, M., Marocchino, A., Massimo, F., Mostacci, A., Petrarca, M., Pompili, R., Serafini, L., Tomassini, P., Vaccarezza, C. & Villa, F. (2016). Stability study for matching in laser driven plasma acceleration. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 829, 6772. 2nd European Advanced Accelerator Concepts Workshop – EAAC 2015.Google Scholar
Sharma, S., Kumar, N., Hussain, S. & Sharma, R. (2017). Nonlinear evolution of the filamentation instability and chaos in laser-plasma interaction. Laser Part. Beams 35, 1018.Google Scholar
Sprangle, P., Esarey, E., Krall, J. & Joyce, G. (1992). Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 22002203.CrossRefGoogle ScholarPubMed
Steinke, S., van Tilborg, J., Benedetti, C., Geddes, C.G.R., Daniels, J., Swanson, K.K., Gonsalves, A.J., Nakamura, K., Shaw, B.H., Schroeder, C.B., Esarey, E. & Leemans, W.P. (2016). Staging of laser-plasma accelerators. Phys. Plasmas 23, 056705.Google Scholar
Tomassini, P. & Rossi, A.R. (2016). Matching strategies for a plasma booster. Plasma Phys. Control. Fusion 58, 034001.CrossRefGoogle Scholar
Tzoufras, M., Lu, W., Tsung, F.S., Huang, C., Mori, W.B., Katsouleas, T., Vieira, J., Fonseca, R.A. & Silva, L.O. (2008). Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002.Google Scholar
Veysman, M.E. & Andreev, N.E. (2016). Comparative study of laser pulses guiding in capillary waveguides and plasma channels at conditions of non-perfect focusing. J. Phys. Conf. Ser. 744, 012109.CrossRefGoogle Scholar