Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:56:28.595Z Has data issue: false hasContentIssue false

Trapping and acceleration of charged particles in Bessel beams

Published online by Cambridge University Press:  28 November 2006

V. H. MELLADO
Affiliation:
Instituto de Fìsica, Universidad Nacional Autónoma de México, Mexico
S. HACYAN
Affiliation:
Instituto de Fìsica, Universidad Nacional Autónoma de México, Mexico
R. JÁUREGUI
Affiliation:
Instituto de Fìsica, Universidad Nacional Autónoma de México, Mexico

Abstract

We study the motion of a classical relativistic charged particle in the electromagnetic field of a Bessel beam exhibiting vector optical vortices, and show how its dynamical properties, such as linear and angular momentum, are transmitted to the particle. The effects of different polarizations are taken into account using transverse electric and magnetic modes, and their superpositions. The constants of motion are identified for the most general case. We report typical numerical results for axial and radial motion for various configurations, with an estimate of expected axial accelerations when transverse magnetic Bessel modes are used. The Lorentz transformation properties of the field are used throughout in order to simplify the calculations.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C. & Woerdman, J.P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 81858189.Google Scholar
Arlt, J., Dholakia, K., Soneson, J. & Wright, E.M. (2001). Optical dipole traps and atomic waveguides based on Bessel light beams. Phys. Rev. A 63, 063602 (1–8).Google Scholar
Barnett, S.M. & Allen, L. (1994). Orbital angular momentum and nonparaxial light beams. Opt. Commun. 110, 670678.Google Scholar
Bialynicki-Birula, I., Bialynicka-Birula, Z. & Chmura, B. (2005). Trojan states of electrons guided by Bessel beams. Laser Phys. 15, 13711380.Google Scholar
Bouchal, Z. & Olivik, M. (1995). Non-diffractive vector Bessel beams. J. Mod. Opt. 42, 15551566.Google Scholar
Bouchal, Z., Horák, R. & Wagner, J. (1996). Propagation invariant electromagnetic fields: Theory and experiment. J. Mod. Opt. 43, 19051920.Google Scholar
Bourdier, A. & Gond, S. (2000). Dynamics of a charged particle in a circularly polarized traveling electromagnetic wave. Phys. Rev. E 62, 41894206.Google Scholar
Durnin, J. (1987). Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4, 651654.Google Scholar
Durnin, J., Miceli, J.J. & Eberly, J.H. (1987). Diffraction-free beams. Phys. Rev. Lett. 58, 14991501.Google Scholar
Garcés-Chávez, V., Volke-Sepulveda, K., Chávez-Cerda, S., Sibbett, W. & Dholakia, K. (2002). Transfer of orbital angular momentum to an optically trapped low-index particle. Phys. Rev. A 66, 063402 (1–8).Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Hacyan, S. & Jáuregui, R. (2006). A relativistic analysis of Bessel beams. J. Phys. B 39, 16691976.Google Scholar
Hafizi, B., Esarey, E. & Sprangle, P. (1997). Laser-driven acceleration with Bessel beams. Phys. Rev. E 55, 35393545.Google Scholar
Horák, R., Bouchal, Z. & Bajer, J. (1997). Nondiffracting stationary electromagnetic field. Opt. Comm. 133, 315327.Google Scholar
Jáuregui, R. & Hacyan, S. (2005). Quantum-mechanical properties of Bessel beams. Phys. Rev. A 71, 033411 (1–10).Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.Google Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.Google Scholar
McGloin, D. & Dholakia, K. (2005). Bessel beams: Diffraction in a new light. Contemp. Phys. 46, 1528.Google Scholar
Nisbet, A. (1955). Hertzian electromagnetic potential and associated gauge transformations. Proc. Roy. Soc. A 231, 250263.Google Scholar
Nisbet, A. (1957). Electromagnetic potentials in a heterogeneous nonconducting medium. Proc. Roy. Soc. 240, 375381.Google Scholar
Patin, D., Bourdier, A. & Lefebvre, E. (2005). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 23, 297302.Google Scholar
Patin, D., Lefebvre, E., Bourdier, A. & D'humiéres, E. (2006). Stochastic heating in ultra high intensity laser-plasma interaction: Theory and PIC code simulations. Laser Part. Beams 24, 223230.Google Scholar
Roberts, C.S. & Buchsbaum, S.J. (1964). Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propagating along the field. Phys. Rev. 135, 381389.Google Scholar
Schnürer, M., Ter-Avetisyan, S., Busch, S., Risse, E., Kalachnikov, M.P., Sandner, W. & Nickles, P. (2005). Ion acceleration with ultrafast laser driven water droplets. Laser Part. Beams 23, 337343.Google Scholar
Shampine, L.F. & Gordon, M.K. (1975). Computer Solution of Ordinary Differential Equations: The Initial Value Problem. San Francisco: Friedman Press.
Turunen, J., Vasara, A. & Friberg, A.T. (1988). Holographic generation of diffraction-free beams. Appl. Opt. 27, 39593962.Google Scholar