Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T01:33:14.872Z Has data issue: false hasContentIssue false

Transport properties of warm dense matter behind intense shock waves

Published online by Cambridge University Press:  10 December 2014

V. B. Mintsev*
Affiliation:
Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia Lomonosov Moscow State University, Moscow, Russia State University of Moscow, Institution of Physics & Technology, Dolgoprudnyi, Russia
V. E. Fortov
Affiliation:
Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia Joint Institute for High Temperatures RAS, Moscow, Russia State University of Moscow, Institution of Physics & Technology, Dolgoprudnyi, Russia
*
Address correspondence and reprint requests to: Victor Mintsev, Institute of Problems of Chemical Physics RAS, Pr. Semenova 1, Chernogolovka, 142432, Russia. E-mail: [email protected]

Abstract

This report presents the overview of the results of investigation of transport properties of warm dense matter in the conditions with strong coupling generated as a result of the shock or multiple shock compression of substance up to the megabar pressure range. We consider the results of measurements of the electrical conductivity in two different regions. The first one is the high temperature region, where the temperatures are of the order or much higher than the ionization potential I of the compressed substance. The region of “pressure ionization” where T ≪ I is the most interesting from the point of view of the specific plasma phase transitions. A few amounts of experimental data on shock compressed matter viscosity are discussed. For the estimations of shear viscosity of strongly coupled plasma experimental data on measurements of electrical conductivity of hydrogen, deuterium and rare gases under intense shock compression were used. It is shown that the ratio of shear viscosity coefficient to volume density of entropy of strongly coupled plasma is of the order of a lower bound, predicted by Kovtun et al. (2005) in frames of string theory methods.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J.R., Reinholz, H., Redmer, R., Mintsev, V.B., Shilkin, N.S. & Gryaznov, V.K. (2007). Electrical conductivity of noble gases at high pressures. Phys. Rev. E 76, 036405.CrossRefGoogle ScholarPubMed
Al'tshuler, L.V. (1965). Use of shock waves in high-pressure physics. Sov. Phys. Usp. 8, 5291.Google Scholar
Al'tshuler, L.V., Trunin, R.F., Krupnikov, K.K. & Panov, N.V. (1996). Explosive laboratory devices for shock wave compression studies. Phys. Usp. 39, 539544.Google Scholar
Al'tshuler, L.V., Trunin, R.F., Urlin, V.D., Fortov, V.E. & Funtikov, A.I. (1999). Development of dynamic high-pressure techniques in Russia. Phys. Usp. 42, 261280.CrossRefGoogle Scholar
Bhalerao, R.S. (2010). Transport properties of the fluid produced at relativistic heavy-ion collider. Pramana: J. Phys. 75, 247257.Google Scholar
Baus, M. & Hansen, J.P. (1980). statistical mechanics of simple Coulomb systems. Phys. Rep. 59, 1.Google Scholar
Bushman, A.V., Glushak, B.L., Gryaznov, V.K., Zhernokletov, M.V., Krasyuk, I.K., Pashinin, P.P., Prokhorov, A.M., Ternovoi, V.Ya., Filimonov, A.S., Fortov, V.E. (1986). Shock compression and adiabatic decompression of a dense bismuth plasma at extreme thermal energy densities. ZhETF Pizma (Russian) 44, 375.Google Scholar
Ebeling, W., Foerster, A. & Fortov, V. (1991). Thermophysical Properties of Hot Dense Plasmas. Berlin: Teubner Verlagsgesellschaft.Google Scholar
Filinov, V.S., Levashov, P.R., Bonitz, M. & Fortov, V.E. (2005). Calculation of the shock hugoniot of deuterium at pressures above 1 Mbar by the path-integral Monte Carlo method. Plasma Phys. Rep. 31, 700704.CrossRefGoogle Scholar
Fortov, V.E., Yakushev, V.V., Kagan, K.L., Lomonosov, I.V., Postnov, V.I. & Yakusheva, T.I. (1999). Anomalous electric conductivity of lithium under quasi-isentropic compression to 60 GPa (0.6 Mbar). Transition into a molecular phase? JETP Lett. 70, 628632.Google Scholar
Fortov, V.E., Yakushev, V.V., Kagan, K.L., Lomonosov, I.V., Maksimov, E.G., Magnitskaya, M.V., Postnov, V.I. & Yakusheva, T.I. (2002). Lithium at high dynamic pressure. J. Phys. Condens. Mat. 14, 10809.CrossRefGoogle Scholar
Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V., Mochalov, M.A., Mikhailov, A.L., Filimonov, A.S., Pyalling, A.A., Mintsev, V.B., Gryaznov, V.K. & Iosilevskii, I.L. (2003). Pressure-produced ionization of nonideal plasma in a megabar range of dynamic pressures. J. Exper. Theoret. Phys. 97, 259278; Zh. Eksp. Teor. Fiz. 124, 288–309.CrossRefGoogle Scholar
Fortov, V.E., Ilkaev, R.I., Arinin, V.A., Burtzev, V.V., Golubev, V.A., Iosilevskiy, I.L., Khrustalev, V.V., Mikhailov, A.L., Mochalov, M.A., Ternovoi, V.Ya. & Zhernokletov, M.V. (2007). Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99, 18501.Google Scholar
Fortov, V.E., Hoffmann, D.H.H. & Sharkov, B.Yu. (2008). Intense ion beams for generating extreme states of matter. Phys. Usp. 51, 109131.CrossRefGoogle Scholar
Fortov, V.E. (2011). Extreme States of Matter on Earth and in the Cosmos. Heidelberg: Springer-Verlag.Google Scholar
Fortov, V.E., Petrov, O.F., Vaulina, O.S. & Timirkhanov, R.A. (2012). Viscosity of a Strongly Coupled Dust Component in a Weakly Ionized Plasma. Phys. Rev. Lett. 109, 055002.Google Scholar
Fortov, V.E. & Mintsev, V.B. (2013). Quantum bound of the shear viscosity of a strongly coupled plasma. Phys. Rev Lett. 109, 055002.Google Scholar
Fu, Z.J., Chen, Q.F. & Chen, X.R. (2012). Electrical conductivity of noble gas plasmas in the warm dense matter regime. Contrib. Plasma Phys. 52, 251260.CrossRefGoogle Scholar
Gantmakher, V.F. (2005). Elektrony v Razuporyadochennykh Sredakh (Kurs Lektsii) [Electrons in Disordered Media (A Course of Lectures)]. Moscow: Nauka.Google Scholar
Hawke, R.S., Burgess, T.J., Duerre, D.E., Huebel, J.G., Keeler, R.N., Klapper, H. & Wallace, W.C. (1978). Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41, 994.CrossRefGoogle Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.CrossRefGoogle Scholar
Ivanov, Iu.V., Mintsev, V.B., Fortov, V.E. &. Dremin, A.N. (1976). Electric conductivity of a non-ideal plasma. Sov. Phys. JETP, 44, 112116; Zh. Eksp. Teor. Fiz. 71, 216–224.Google Scholar
Kovtun, P., Son, D.T. & Starinets, A.O. (2005). Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601.Google Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.Google Scholar
Mineev, V.N. & Funtikov, A.I. (2004). Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core. Phys. Usp. 47, 671686.Google Scholar
Mintsev, V.B., Fortov, V.E. & Gryaznov, V.K. (1980). Electric conductivity of a high-temperature nonideal plasma. Sov. Phys. JETP 52, 5963; Zh. Eksp. Teor. Fiz. 79, 116–124.Google Scholar
Mintsev, V.B. & Fortov, V.E. (1982). Explosion-driven shock-tubes. Hi. Temp. 20, 623645.Google Scholar
Mintsev, V.B & Zaporogets, Yu.B. (1989). Reflectivity of dense plasma. Contribut. Plasma Phys. 29, 493501.CrossRefGoogle Scholar
Mintsev, V.B. & Fortov, V.E. (2006). Dense plasma properties from shock wave experiments. J. Phys. A 39, 43194327.Google Scholar
Molodets, A.M., Shakhray, D.V., Khrapak, A.G. & Fortov, V.E. (2009). Metallization of aluminum hydride AlH3 at high multiple-shock pressures. Phys. Rev. 79, 174108.Google Scholar
Nabatov, S.S., Dremin, A.N., Postnov, V.I. & Yakushev, V.V. (1979). Measurement of the electrical conductivity of sulfur under superhigh dynamic pressures. Pis'ma Zh. Eksp. Teor. Fiz. 29, 407.Google Scholar
Neaton, J.B & Ashcroft, N.W. (1999). Pairing in dense lithium. Nature (London) 400, 141144.Google Scholar
Nellis, W.J. (2006). Dynamic compression of materials: Metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 1479.CrossRefGoogle Scholar
Norman, G.E. & Starostin, A.N. (1970). Thermodynamics of a strongly nonideal plasma. Teplofiz. Vys. Temp. 8, 413.Google Scholar
Osip'yan, Yu.A., Avdonin, B.V., Kagan, K.L., Nikolaev, R.K., Postnov, V.I., Sidorov, N.S., Shakhrai, D.V., Shestakov, A.F., Kveder, V.V. & Fortov, V.E. (2005). Nonmonotonic variation of the electrical conductivity of C60 fullerene crystals dynamically compressed to 300 kbar as evidence of anamalously strong reduction of the energy barrier of C60 polymerization at high pressures. Pis'ma Zh. Eksp. Teor. Fiz. 81, 587Google Scholar
Pavlovskii, A.I., List all authors. (1987). Megagauss Technology and Pulsed Power Applications (Fowler, C.M., Caird, R.S., Erickson, D.J., Eds). New York: Plenum Press, p. 255.Google Scholar
Saumon, D. & Chabrier, G. (1992). Fluid hydrogen at high density: Pressure ionization. Phys. Rev. A 46 2084.Google Scholar
Shilkin, N.S., Dudin, S.V., Gryaznov, V.K., Mintsev, V.B. & Fortov, V.E. (2003). Measurements of the electron concentration and conductivity of a partially ionized inert gas plasma. Zh. Eksp. Teor. Fiz. 124, 10301040.Google Scholar
Shkarofsky, I.P., Jonston, T.W. & Bachynski, M.P. (1966). The Particle Kinetics of Plasma. Reading: Addison-Wesley.Google Scholar
Stowe, S., Bock, R., Dornik, M., Spiller, P., Stetter, M., Fortov, V.E., Mintsev, V., Kulish, M., Shutov, A., Yakushev, V., Sharkov, B., Golubev, S., Bruynetkin, B., Funk, U., Geissel, M., Hoffmann, D.H.H. & Tahir, N.A. (1998). High density plasma physics with heavy-ion beams. Nucl. Instr. & Meth. Phys. Res. Sect. A 415, 6167.Google Scholar
Tamblyn, I., Raty, J. & Bonev, S. (2008). Tetrahedral clustering in molten lithium under pressure. Phys. Rev. Lett. 101, 075703.Google Scholar
Ternovoi, V.Ya., Filimonov, A.S., Pyalling, A.A., Mintsev, V.B. & Fortov, V.E. (2002). Shock Compression of Condensed Matter—2001. New York: AIP Press, p. 107.Google Scholar
Thoma, M.H. & Morfill, G.E. (2008). Ratio of viscosity to entropy density in a strongly coupled one-component plasma. Europhys. Lett. 82, 65, 1.Google Scholar
Turlapov, A., Kinast, J., Clancy, B., Luo, Le, Joseph, J. & Thomas, J. E. (2007). Is a gas of strongly interacting atomic fermions a nearly perfect fluid? J. Low Temp. Phys. 150, 567576.Google Scholar
Reinholz, H., Ropke, G., Morozov, I., Mintsev, V., Zaparoghets, Y., Fortov, V. & Wierling, A. (2003). Density profile in shock wave fronts of partially ionized xenon plasmas. J. Phys. A 36, 59915997.Google Scholar
Varentsov, D., Ternovoi, V.Y., Kulish, M., Fernengel, D., Fertman, A., Hug, A., Menzel, J., Ni, P., Nikolaev, D.N., Shilkin, N., Turtikov, V., Udrea, S., Fortov, V.E., Golubev, A.A., Gryaznov, V.K., Hoffmann, D.H.H., Kim, V., Lomonosov, I.V., Mintsev, V., Sharkov, B.Y., Shutov, A., Spiller, P., Tahir, N.A. & Wahl, H. (2007). High-energy-density physics experiments with intense heavy ion beams. Nucl. Instr. & Meth. Phys. Res. Sect. A 577, 262266.Google Scholar
Weir, S.T., Mitchell, A.C. & Nellis, W.J. (1996). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76, 1860.Google Scholar
Wigner, E. (1938). Effects of the electron interaction on the energy levels of electrons in metals Trans. Faraday Soc. 34, 678685.Google Scholar
Wlazłowski, G., Magierski, P. & Drut, J. (2012). Shear viscosity of a unitary Fermi gas. Phys. Rev. Lett. 109, 020406.Google Scholar
Yakushev, V.V. (1997). Electrical conductivity of shock-compressed sulphur, iodine, bromine and water. MRS Proc. doi:http://dx.doi.org/10.1557/PROC-499-121.Google Scholar
Zel'dovich, Ya.B. & Landau, L.D. (1944). The Ratio between the liquid and gaseous states in metals. Zh. Eksp. Teor. Fiz. 14, 32.Google Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1966). The Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Moscow: Nauka.Google Scholar