Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T23:08:33.209Z Has data issue: false hasContentIssue false

Time-resolved X-ray spectroscopy of deeply buried tracer layers as a density and temperature diagnostic for the fast ignitor

Published online by Cambridge University Press:  16 October 2009

J. A. Koch
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
C. A. Back
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
C. Brown
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
K. Estabrook
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
B. A. Hammel
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
S. P. Hatchett
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
M. H. Key
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
J. D. Kilkenny
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
O. L. Landen
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
R. W. Lee
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
J. D. Moody
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
A. A. Offenberger
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
D. Pennington
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
M. D. Perry
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
M. Tabak
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
V. Yanovsky
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
R. J. Wallace
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
K. B. Wharton
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550
S. C. Wilks
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, L-473, Livermore CA 94550

Abstract

The fast ignitor concept for inertial confinement fusion relies on the generation of hot electrons, produced by a short-pulse ultrahigh intensity laser, which propagate through high-density plasma to deposit their energy in the compressed fuel core and heat it to ignition. In preliminary experiments designed to investigate deep heating of high-density matter, we used a 20 joule, 0.5–30 ps laser to heat solid targets, and used emission spectroscopy to measure plasma temperatures and densities achieved at large depths (2–20 microns) away from the initial target surface. The targets consisted of an Al tracer layer buried within a massive CH slab; H-like and He-like line emission was then used to diagnose plasma conditions. We observe spectra from tracer layers buried up to 20 microns deep, measure emission durations of up to 200 ps, measure plasma temperatures up to Te=650 eV, and measure electron densities above 1023 cm−3. Analysis is in progress, but the data are in reasonable agreement with heating simulations when space-charge induced inhibition is included in hot-electron transport, and this supports the conclusion that the deep heating is initiated by hot electrons.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beg, F.N. et al. 1998 Phys. Plasmas (in press).Google Scholar
Bell, A.R. et al. 1998 Plasma Phys. Control. Fusion (in press).Google Scholar
Borghesi, M. et al. 1997 Phys. Rev. Lett. 78, 879.CrossRefGoogle Scholar
Borisov, A.B. et al. 1992 Phys. Rev. Lett. 68, 2309.CrossRefGoogle Scholar
Deutsch, C. et al. 1996 Phys. Rev. Lett. 77, 2483.CrossRefGoogle Scholar
Ditmire, T. et al. 1996 Phys. Rev. Lett. 77, 498.CrossRefGoogle Scholar
Gibbon, P. & Förster, E. 1996 Plasma Phys. Control. Fusion 38, 769.CrossRefGoogle Scholar
Guethlein, G. et al. 1996 Phys. Rev. Lett. 77, 1055.CrossRefGoogle Scholar
Hares, J.D. et al. 1979 Phys. Rev. Lett. 42, 1216.CrossRefGoogle Scholar
Henke, B.L. et al. 1981 J. Appl. Phys. 52, 1509.CrossRefGoogle Scholar
Henke, B.L. et al. 1993 Atomic Data and Nuclear Tables 54.CrossRefGoogle Scholar
Jiang, Z. et al. 1995 Phys. Plasmas 2, 1702.CrossRefGoogle Scholar
Kelly, R.L. 1987 J. Phys. Chem. Ref. Data 16 (Suppl. 1).Google Scholar
Kmetec, J.D. et al. 1992 Phys. Rev. Lett. 68, 1527.CrossRefGoogle Scholar
Koch, J.A. et al. 1994 Phys. Rev. A 50, 1877.CrossRefGoogle Scholar
Kodama, R. et al. 1996 Phys. Rev. Lett. 77, 4906.CrossRefGoogle Scholar
Lee, R.W. & Larsen, J.T. 1996 J. Quant. Spectrosc. Rad. Transfer 56, 535.CrossRefGoogle Scholar
Lee, Y.T. & More, R.M. 1984 Phys. Fluids 27, 1273.CrossRefGoogle Scholar
Maine, P. et al. 1988 IEEE J. Quant. Electron. 24, 398.CrossRefGoogle Scholar
Malka, G. & Miquel, J.L. 1996 Phys. Rev. Lett. 77, 75.CrossRefGoogle Scholar
Modena, A. et al. 1995 Nature 377, 606.CrossRefGoogle Scholar
Moody, J.D., unpublished LLNL data.Google Scholar
Murnane, M.M. et al. 1989 Phys. Rev. Lett. 62, 155.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Perry, M.D. & Mourou, G. 1994 Science 264, 917.CrossRefGoogle Scholar
Rode, A.V. et al. unpublished experimental data.Google Scholar
Strickland, D. & Mourou, G. 1985 Opt. Commun. 56, 219.CrossRefGoogle Scholar
Tabak, M. et al. 1994 Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Tallents, G.J. et al. 1989 Phys. Rev. A 40, 2857.CrossRefGoogle Scholar
Wharton, K.B. unpublished LLNL data.Google Scholar
Wilks, S.C. et al. 1992 Phys. Rev. Lett. 69, 1383.CrossRefGoogle Scholar