Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T19:31:21.332Z Has data issue: false hasContentIssue false

Time dependence of the inversion condition and optimized X-ray emission in recombining laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

W. Brunner
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Rudower Chaussee 6, 12489 Berlin, Germany
R.W. John
Affiliation:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Rudower Chaussee 6, 12489 Berlin, Germany

Abstract

The recombination X-ray laser scheme is considered in the case of recombining plasmas produced by laser pulses which are short to such a degree that the condition for inversion in X-ray transitions of the ions is essentially time-dependent. Using an analytic four-level model, applicable for H-like and Li-like ions, we calculate the inversion conditions for the 4→3, 3→2, and 2→l transitions in H-like ions as functions of time. As we have already shown, a drastic change occurs, especially for the 3→2 transition. To achieve inversion, for short times the free-electron density as a function of the temperature Te, Neinv(Te), must be greater than a critical density Nesh (Te), Neinv(Te) > Nesh(Te), whereas for longer times in the quasi-steady state, Neinv(Te) must be smaller than a critical density Neqv(Te), Neinv(Te) < Nequ(Te). We also consider the evolution of the inversion condition in the intermediate time domain. The time duration of the existence of the short-time 3→2 inversion condition–in the time interval from the initial state with unoccupied lower levels to the quasi-steady state—is in the main determined by t α 1/A21; for example, one has t ≈ 730 fs for Na.

In a plasma produced in particular by optical-field ionization, during the initial cascade populating the excited levels, an inversion may be possible in the 2→1 resonance line transition in the transient regime. The inversion in this transition is of interest especially because of the arising possibility to achieve X-ray gain at shorter wavelengths. In the transient case, an inversion occurs for a small time depending on the temperature Te and the density N.

In addition, we discuss generally the time behavior of the population densities (especially of N3) and show that an optimal population density occurs, on the one hand, for very short times (fs region, depending on Z). On the other hand, however, the optimal (ion-)density-temperature relation is determined via a time of the optimal population density required with regard to the experimental conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bethe, H.A. & Salpeter, E.E. 1957 Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin-Göttingen-Heidelberg).CrossRefGoogle Scholar
Brunner, W. & John, R.W. 1993 In Book of Abstracts, 22nd European Conference on Laser Interaction with Matter (Paris), P 16/2.Google Scholar
Brunner, W. & Schlegel, Th. 1986 J. Phys. (Paris) 47, C6–99.Google Scholar
Brunner, W. et al. 1990 Appl. Phys. B50, 291.CrossRefGoogle Scholar
Brunner, W. et al. 1992 Plasma Phys. and Contr. Fusion 34, 263.CrossRefGoogle Scholar
Burnett, N.H. & Corkum, P.B. 1989 J. Opt. Soc. Am. B6, 1195.CrossRefGoogle Scholar
Burnett, N.H. & Enright, G.D. 1990 IEEE J. Quant. Electr. 26, 1797.CrossRefGoogle Scholar
Corkum, P.B. et al. 1989 Phys. Rev. Lett. 62, 1259.CrossRefGoogle Scholar
Drawin, H.W. & Emard, F. 1977 Physica 85C, 333.Google Scholar
Duston, D. & Duderstadt, J.J. 1978 J. Appl. Phys. 49, 4388.CrossRefGoogle Scholar
Eder, D.C. et al. 1992 Phys. Rev. A45, 6761.CrossRefGoogle Scholar
Elton, R.C. 1983 At. Mol. Phys. 13, 59.Google Scholar
Elton, R.C. 1990 X-Ray Lasers (Academic Press, Boston).Google Scholar
Goodwin, D.G. & Fill, E.E. 1988 J. Appl. Phys. 64, 1005.CrossRefGoogle Scholar
Griem, H.R. 1964 Plasma Spectroscopy (McGraw-Hill, New York).Google Scholar
Gudzenko, L.I. & Shelepin, L.A. 1964 Sov. Phys. JETP 18, 998.Google Scholar
Hinnov, E. & Hirschberg, J.G. 1962 Phys. Rev. 125, 795.CrossRefGoogle Scholar
John, R.W. & Brunner, W. 1993 In Book of Abstracts, 11th International Workshop on Laser Interaction and Related Plasma Phenomena (Monterey, California), p. 166.Google Scholar
John, R.W. & Brunner, W. 1994 Laser Part. Beams 12, 515.CrossRefGoogle Scholar
Jones, W.W. & Ali, A.W. 1975 Appl. Phys. Lett. 26, 450.CrossRefGoogle Scholar
Keane, C.J. et al. 1990 In Femtosecond to Nanosecond High-Intensity Lasers and Applications, Campbell, E. M., ed. (Proc. SPIE 1229, Bellingham), p. 190.CrossRefGoogle Scholar
Nagata, Y. et al. 1993 Phys. Rev. Lett. 71, 3774.CrossRefGoogle Scholar
Penetrante, B.M. & Bardsley, J.N. 1991 Phys. Rev. A43, 3100.CrossRefGoogle Scholar
Peyraud, J. & Peyraud, N. 1972 J. Appl. Phys. 43, 2993.CrossRefGoogle Scholar
Seaton, M.J. 1959 Mon. Not. R. Astron. Soc. 119, 81.CrossRefGoogle Scholar
Seaton, M.J. 1964 Planetary and Space Science 12, 55.CrossRefGoogle Scholar
Sobelman, I.I. et al. 1981 Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, Berlin, Heidelberg, New York).CrossRefGoogle Scholar
Tallents, G.J. 1985 Laser Part. Beams 3, 475.CrossRefGoogle Scholar
Whitney, K.G. & Davis, J. 1974 J. Appl. Phys. 45, 5294.CrossRefGoogle Scholar
Zhang, J. & Key, M.H. 1993 J. Appl. Phys. 74, 7606.CrossRefGoogle Scholar