Published online by Cambridge University Press: 10 February 2011
Theoretical and experimental studies of radiative properties of substances heated by pulsed current devises or lasers and used as X-ray sources have been carried out depending on plasma conditions, and specific spectra of X-ray absorption and radiation for different materials have been calculated. Important features of the theoretical model, known as the ion model of plasma, are discussed. This model can be applied for calculations of the radiative properties of complex materials over a wide range of plasma parameters. For purposes of indirect-driven inertial fusion based on the hohlraum concept, an optimization method is used for the selection of an effective complex hohlraum wall material, which provides high radiation efficiency at laser interaction with the wall. The radiation efficiency of the resulting material is compared with the efficiency of other composite materials that have previously been evaluated theoretically. A similar theoretical study is performed for the optically thin X-pinch plasma produced by exploding wires. Theoretical estimations of radiative efficiency are compared with experimental data that have been obtained from measurements of X-pinch radiation energy yield using two exploding wire materials, NiCr and Alloy 188. It is shown that the theoretical results agree well with the experimental data. A symmetric multilayer X-pinch, where W and Mo wires are used, is as well considered. The theoretical explanation of experimental phenomena is discussed based on the W and Mo radiative spectra. The ion model was as well applied for interpretation of experimental results on opacities of CHO-plasma obtained via indirect heating of low density polymer layers by means of soft X-rays. The new diagnostics method based on the deformation of the of the Carbon absorption K-edge when foam layer is heated to plasma is discussed. The spectral coefficients for X-ray absorption in CHO-plasma are calculated in the photon energy region around the Carbon K-edge for different plasma temperatures and mean foam density. In this case, the Carbon K-edge position on the energy scale can be used for plasma temperature diagnostic.