Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:20:17.139Z Has data issue: false hasContentIssue false

Temporal and spectral features of the (3/2) ω0 spatial fine structure in laser irradiated planar targets

Published online by Cambridge University Press:  09 March 2009

Lin Zunqi
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P.R.C.
Tan Weihan
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P.R.C.
Gu Min
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P.R.C.
Mei Guang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P.R.C.
Pan Chengming
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P.R.C.
Yu Wenyan
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai, P.R.C.

Abstract

Both temporally and spectrally resolved fine structures of 90° lateral (3/2)ω0 harmonic emission were experimentally observed. The existence of (3/2)ω0 harmonic filaments is attributed to formation from the moving filament bottom at its transient nc/4 surface. The double hump structure with its intense red hump of laterally emitted (3/2)ω0 spectrum can also be explained by a Doppler correction in addition to the thermal correction. Estimation of both red and blue spectral shifts with our simple model is qualitatively consistent with experimental results. Experiments showed that the (3/2)ω0 emission was evidently suppressed by using a broad band laser. This may be promising for superhot electron suppression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avrov, A. L. et al. 1977 Sov. Phys. JETP, 45, 507.Google Scholar
Baldis, H. A. & Corkum, P. B. 1980 Phys. Rev. Lett. 45, 1260.CrossRefGoogle Scholar
Barr, H. C. 1979 Rutherford Laboratory Report RL–79–036, Sec.8.33.Google Scholar
Bychenkov, V. Yu 1977 Sov. J. Plasma Phys. 2, 457.Google Scholar
Bychenkov, V. Yu, Zozulja, A. A., Silin, V. P., Tikhonchak, V. T. & Beitr, , 1983 Plasma Phys. 23, 331.Google Scholar
Carter, P. D., Sim, S. M. L., Barr, H. C. & Evans, R. G. 1980 Phys. Rev. Lett. 44, 1407.CrossRefGoogle Scholar
Ebrahim, N. A., Baldis, H. A., Joshi, C. & Benesch, R. 1980 Phys. Rev. Lett. 45, 1179.CrossRefGoogle Scholar
Fioueroa, H., Joshi, C., Azechi, H., Ebrahim, N. A., Estabrook, K. 1984 Phys. Fluids, 27, 1887.Google Scholar
Goldrick, E. Mc, Sim, S. M. L., Turner, R. E., & Willi, O. 1984 Opt. Commun. 50, 107.CrossRefGoogle Scholar
Herbst, M. J. et al. 1981 Phys. Rev. Lett. 46, 328.CrossRefGoogle Scholar
Herbst, M. J., Stamper, I. A., Whitlock, R. R., Lehmberg, R. H. & Ripin, R. H. 1981 NRL, Memorandum Report, 443.Google Scholar
Langdon, A. B. & Lasinski, B. F. 1975 Phys. Rev. Lett. 34, 934.CrossRefGoogle Scholar
Zunqi, Lin, Willi, O. & Rumsby, P. T. 1981 J. Phys. D: Appl Phys. 14, L35.Google Scholar
Zunqi, Lin 1982 Opt. Commun. 42, 351.Google Scholar
Liu, C. S., Rosenbluth, M. N. 1976 Phys. Fluids, 19, 967.CrossRefGoogle Scholar
Raven, A. & Willi, O. 1979 Phys. Rev. Lett. 43, 278.CrossRefGoogle Scholar
Short, R. W., Seka, W., Tanaka, K. & Williams, E. A. 1984 Phys. Rev. Lett. 52, 1496.CrossRefGoogle Scholar
Sigel, R. 1980 Phil. Trans. R. Soc. Lond, A298, 407.Google Scholar
Weihan, Tan 1985 Private Communication, Under the action of ponderomotive force, the equation of motion for electrons is integrating when the second term can be neglected, by setting length of filament x ≃ 100 μm scale length of under density L 1 ≃ 1000 μm, KTe = 500 eV.Google Scholar
Willi, O. et al. 1982 Opt. Commun. 41, 110.CrossRefGoogle Scholar