Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T04:28:08.601Z Has data issue: false hasContentIssue false

Temperature measurement of warm-dense-matter generated by intense heavy-ion beams

Published online by Cambridge University Press:  31 October 2008

P.A. Ni*
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California
M.I. Kulish
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
V. Mintsev
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
D.N. Nikolaev
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
V.Ya. Ternovoi
Affiliation:
Institute of Problems of Chemical Physics, Chernogolovka, Russia
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
S. Udrea
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
A. Hug
Affiliation:
Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany
N.A. Tahir
Affiliation:
Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany
D. Varentsov
Affiliation:
Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany
*
Address correspondence and reprint requests to: P.A. Ni, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720-8201. E-mail: [email protected]

Abstract

This paper describes a fast multi-channel radiation pyrometer that was developed for warm dense-matter experiments with intense heavy ion beams at the Gesellschaft für Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring brightness temperatures from 2000 K to 50,000 K, at six wavelengths in the visible and near-infrared parts of the spectrum, with 5 ns temporal resolution, and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on interference filters, which also act as mirrors to allow for simultaneous spectral discrimination of the same ray at multiple wavelengths.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adonin, A., Jacoby, J., Turtikov, V., Fertman, A., Golubev, A., Hoffmann, D.H.H., Ulrich, A., Varentsov, D. & Wieser, J. (2007). Laser effect on the 248 nm KrF transition using heavy ion beam pumping. Nucl. Instrum. & Meth. Phys. Res. A 577, 357360.CrossRefGoogle Scholar
Becker, F., Hug, A., Forck, P., Kulish, M., Ni, P., Udrea, S. & Varentsov, D. (2006). Design, development, and testing of non-intercepting profile diagnostics for intense heavy ion beams using a capacitive pickup and beam induced gas fluorescence monitors. Laser Part. Beams 24, 541551.CrossRefGoogle Scholar
Cao, L.F., Uschmann, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Celliers, P. & Ng, A. (1993). Optical probing of hot expanded states produced by shock release. Phys. Rev. E 47, 35473565.CrossRefGoogle ScholarPubMed
Coates, P.B. (1988). The least-squares approach to multi-wavelength pyrometry. High Temp. High Pressure 20, 433441.Google Scholar
Deutsch, C. & Popoff, R. (2006). Low velocity ion stopping of relevance to the US beam-target program. Laser Part. Beams 24, 421425.CrossRefGoogle Scholar
Dewitt, D.P. (1998). Theory and Practice of Radiation Thermometry. New York: John Wiley & Sons.Google Scholar
Drude, P. (1904). Optische Eigenschaften und Elektronentheorie. Annalen der Physik 319, 677725.CrossRefGoogle Scholar
Fortov, V.E., Ilkaev, R.I., Arinin, V.A., Burtzev, V.V., Golubev, V.A., Iosilevskiy, I.L., Khrustalev, V.V., Mikhailov, A.L., Mochalov, M.A., Ternovoi, V.Y. & Zhernokletov, M.V. (2007). Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99.CrossRefGoogle Scholar
Gardner, J.L., Jones, T.P. & Sainty, W.G. (1982). Induced-transmission interference-filter array for multiwavelength pyrometry. Appl. Opt. 21, 12591261.CrossRefGoogle ScholarPubMed
Hagen, E. & Rubens, H. (1903). Über die Beziehungen des Reflexions- und Emissionsvermögens der Metalle zu ihrem elektrischen Leitvermögen. Annalen der Physik 11, 873901.CrossRefGoogle Scholar
Henning, W.F. (2004). The future GSI facility. Nucl. Instrum. & Meth. Phys. Res. B 214, 211215.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Korostiy, S., Ni, P., Pikuzc, S.A., Rethfeld, B., Rosmej, O., Roth, M., Tahir, N.A., Udrea, S., Varentsov, D., Weyrich, K., Sharkov, B.Y. & Maron, Y. (2007). Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt. Nucl. Instrum. & Meth. Phys. Res. A 577, 813.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Logan, B.G., Bieniosek, F.M., Celata, C.M., Coleman, J., Greenway, W., Henestroza, E., Kwan, J.W., Lee, E.P., Leitner, M., Roy, P.K., Seidl, P.A., Vay, J.L., Waldron, W.L., Yu, S.S., Barnard, J.J., Cohen, R.H., Friedman, A., Grote, D.P., Covo, M.K., Molvik, A.W., Lund, S.M., Meier, W.R., Sharp, W., Davidson, R.C., Efthimion, P.C., Gilson, E.P., Grisham, L., Kaganovich, I.D., Qin, H., Sefkow, A.B., Startsev, E.A., Welch, D. & Olson, C. (2007). Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion. Nucl. Instrum. & Meth. Phys. Res. A 577, 17.CrossRefGoogle Scholar
Michalski, L., Eckersdorf, K., Kucharski, J. & McGhee, J. (2001). Temperature Measurement. New York: John Wiley & Sons.CrossRefGoogle Scholar
Mitchell, A.C., Nellis, W.J., Moriarty, J.A., Heinle, R.A., Holmes, N.C., Tipton, R.E. & Repp, G.W. (1991). Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 Tpa (24-Mbar). J. Appl. Phys. 69, 29812986.CrossRefGoogle Scholar
Pellerin, M.A., Tsai, B.K., Dewitt, D.P. & Dall, G.J. (1992). Temperature, Its Measurement and Control in Science and Industry. College Parks, MD: American Institute of Physics.Google Scholar
Price, D.J. (1949). A theory of reflectivity and emissivity. Proc. Phys. Soc. A 62, 278283.CrossRefGoogle Scholar
Sasaki, T., Yano, Y., Nakajima, M., Kawamura, T. & Horioka, K. (2006). Warm-dense-matter studies using pulse-powered wire discharges in water. Laser Part. Beams 24, 371380.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Grayaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 a). Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. & Meth. Phys. Res. A 544, 1626.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 b). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Juranek, H., Redmer, R., Portugues, R.F., Lomonosov, I. & Fortov, V.E. (2003). The creation of strongly coupled plasmas using an intense heavy ion beam: Low-entropy compression of hydrogen and the problem of hydrogen metallization. J. Phys. A 36, 61296135.CrossRefGoogle Scholar
Tahir, N.A., Schmidt, R., Brugger, M., Lomonosov, I.V., Shutov, A., Piriz, A.R., Udrea, S., Hoffmann, D.H.H. & Deutsch, C. (2007 a). Prospects of high energy, density physics research using the CERN super proton synchrotron (SPS). Laser Part. Beams 25, 639647.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). HEDgeHOB: High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. & Meth. Phys. Res. A 577, 238249.CrossRefGoogle Scholar
Udrea, S., Ternovoi, V., Shilkin, N., Fertman, A., Fortov, V.E., Hoffmann, D.H.H., Hug, A., Kulish, M.I., Mintsev, V., Ni, P., Nikolaev, D., Tahir, N.A., Turtikov, V., Varentsov, D. & Yuriev, D. (2007). Measurements of electrical resistivity of heavy ion beam produced high energy density matter: Latest results for lead and tungsten. Nucl. Instrum. & Meth. Phys. Res. A 577, 257261.CrossRefGoogle Scholar
Varentsov, D., Tahir, N.A., Lomonosov, I.V., Hoffmann, D.H.H., Wieser, J. & Fortov, V.E. (2003). Energy loss dynamics of an intense uranium beam interacting with solid neon for equation-of-state studies. Europhys. Lett. 64, 5763.CrossRefGoogle Scholar
Varentsov, D., Ternovoi, V.Y., Kulish, M., Fernengel, D., Fertman, A., Hug, A., Menzel, J., Ni, P., Nikolaev, D.N., Shilkin, N., Turtikov, V., Udrea, S., Fortov, V.E., Golubev, A.A., Gryaznov, V.K., Hoffmann, D.H.H., Kim, V., Lomonosov, L., Mintsev, V., Sharkov, B.Y., Shutov, A., Spiller, P., Tahir, N.A. & Wahl, H. (2007). High-energy-density physics experiments with intense heavy ion beams. Nucl. Instrum. & Meth. Phys. Res. A 577, 262266.CrossRefGoogle Scholar
Weir, S.T., Mitchell, A.C. & Nellis, W.J. (1996). Metallization of fluid molecular hydrogen at 140 GPa (1.4 mbar). Phys. Rev. Lett. 76, 18601863.CrossRefGoogle ScholarPubMed
Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X. & Zhang, G.X. (2006). A pulsed power generator for x-pinch experiments. Laser Part. Beams 24, 503509.CrossRefGoogle Scholar
Zvorykin, V.D., Didenko, N.V., Ionin, A.A., Kholin, I.V., Konyashchenko, A.V., Krokhin, O.N., Levchenko, A.O., Mavritskii, A.O., Mesyats, G.A., Molchanov, A.G., Rogulev, M.A., Seleznev, L.V., Sinitsyn, D.V., Tenyakov, S.Y., Ustinovskii, N.N. & Zayarnyi, D.A. (2007). GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams 25, 435451.CrossRefGoogle Scholar