Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:00:20.209Z Has data issue: false hasContentIssue false

Surface wave excitation by a density modulated electron beam in a magnetized dusty plasma cylinder

Published online by Cambridge University Press:  17 June 2013

Ved Prakash*
Affiliation:
School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India
Suresh C. Sharma
Affiliation:
Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, India
Vijayshri
Affiliation:
School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India
Ruby Gupta
Affiliation:
Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi, India
*
Address correspondence and reprint requests to: Ved Prakash, India Meteorological Department, Ministry of Earth Science, Lodi Road, New Delhi-110 003, India. E-mail: [email protected]

Abstract

This paper studies the surface plasma wave excitation via Cerenkov and fast cyclotron interaction by a density modulated electron beam propagating through a magnetized dusty plasma cylinder. The dispersion relation of surface plasma waves has been derived and it has been shown that the phase velocity of waves increases with increase in relative density δ(= nio/ne0, where ni0 is the ion plasma density and ne0 is the electron plasma density) of negatively charged dust grains. The beam radius is taken slightly less than the radius of dusty plasma cylinder. The frequency and the growth rate of the unstable wave instability increases with increase in the value of δ and normalized frequency ω/ωpe. The growth rate of the instability increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and square root of beam density in fast cyclotron interaction. The dispersion relation of surface plasma waves has been retrieved from the derived dispersion relation by considering that the beam is absent and there are no dust grains in the plasma cylinder.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M., Garate, E., Rostoker, N., Song, Y., Van Drie, A. & Bystritskii, V. (2005). Propagation of intense plasma and ion beams across B-field in vacuum and magnetized plasma. Laser and Particle Beams 23, 117129.CrossRefGoogle Scholar
Anisimov, V.N., Baranov, V.Yu., Derkach, O.N., Dykhne, A.M., Malyuta, D.D., Pismennyi, V.D., Rysev, B.P. & Sebrant, A.Yu. (1988). Resonant phenomena in laser excitation of surface waves on solids. IEEE J. Quant. Electron. 24, 675682.CrossRefGoogle Scholar
Barnes, W.L., Dereux, A. & Ebbesen, T.W. (2003). Surface plasmon subwavelength optics. Nature (London) 424, 824830.CrossRefGoogle ScholarPubMed
Bigongiari, A., Raynaud, M. & Riconda, C. (2011). Steady magnetic-field generation via surface-plasma-wave excitation. Phy. Rev. E 84, 01540210154024.CrossRefGoogle ScholarPubMed
Bouhelier, A., Ignatovich, F., Bruyant, A., Huang, C., Francs, G. Colas Des, Weeber, J.C., Dereux, A., Wiederrecht, G.P. & Novotny, L. (2007). Surface plasmon interference excited by tightly focused laser beams. Opt. Lett. 32, 25352537.CrossRefGoogle ScholarPubMed
Boyd, G.D., Gould, R.W. & Field, L.M. (1961). Interaction of a modulated electron beam with a plasma. Proceedings of the Institute of Radio Engineers 49, 19061916.Google Scholar
Chen, N.C., Lien, W.C., Liu, C.R., Huang, Y.L., Liu, Y.R., Chou, C., Chang, S.Y. & Ho, C.W. (2011). Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry. J. Appl. Phy. 109, 04310410431047.Google Scholar
Cheng, Y.C., Su, W.K. & Liou, J.H. (2000). Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol. Opt. Eng. 39, 311314.Google Scholar
Cramer, N.F., Yeung, L.K. & Vladimirov, S.V. (1998). Surface waves in a magnetized plasma with dust grains. Phys. Plasmas 5, 31263134.CrossRefGoogle Scholar
Ezaki, M.A., Kumagai, H., Toyoda, K. & Obara, M. (1995). Surface modification of III–V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers. IEEE J. Sel. Top. Quant. Electron. 1, 841847.CrossRefGoogle Scholar
Fink, W. & Schneider, W. (1975). Optical modulation by surface plasma waves. Opt. Acta 22, 443450.Google Scholar
Genet, C. & Ebbesen, T.W. (2007). Light in tiny holes. Nature (London) 445, 3946.CrossRefGoogle ScholarPubMed
Ghorbanalilu, M. (2012). Second and third harmonics generation in the interaction of strongly magnetized dense plasma with an intense laser beam. Laser Part. Beams 30, 291298.CrossRefGoogle Scholar
Girka, I.O., Girka, V.O. & Pavlenko, I.V. (2011 a). Excitation of ion azimuthal surface modes in a magnetized plasma by annular flow of light ions. Progress in Electromagnetics Research 21, 267278.CrossRefGoogle Scholar
Girka, V.O., Girka, I.O. & Pavlenko, I.V. (2011 b). Excitation of azimuthal surface modes by relativistic flows of electrons in the high-frequency range. Plasma Phys. Repts 37, 447454.CrossRefGoogle Scholar
Gupta, R., Sharma, S.C. & Prakash, V. (2010). Excitation of surface plasma waves by a density-modulated electron beam in a magnetized plasma cylinder. Phys. Plasmas 17, 12210511221056.Google Scholar
Irvine, S.E., Dechant, A. & Elezzabi, A.Y. (2004). Generation of 0.4 femtosecond pulses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801184804.CrossRefGoogle ScholarPubMed
Irvine, S.E. & Elezzabi, A.Y. (2005). Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses. Appl. Phys. Lett. 86, 264102264104.CrossRefGoogle Scholar
Jana, M.R., Sen, A. & Kaw, P.K. (1993). Collective effects due to charge-fluctuation dynamics in a dusty plasma. Phys. Rev. E 48, 39303933.CrossRefGoogle Scholar
Klimov, V.V., Ducloy, M. & Letokhov, V.S. (2002). A model of an apertureless scanning microscope with a prolate nanospheroid as a tip and an excited molecule as an object. Chem. Phy. Lett. 358, 192198.CrossRefGoogle Scholar
Krafft, C., Thevenet, P., Matthiessent, G., Lundin, B., Belmont, G., Lembege, B., Solomon, J., Lavergnat, J. & Lehner, T. (1994). Whistler wave emission by a modulated electron beam. Phys. Rev. Lett. 72, 649652.CrossRefGoogle ScholarPubMed
Kretschmann, E. & Raether, H. (1968). Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 21352136.CrossRefGoogle Scholar
Kretschmann, E. (1971). Determination of optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313324.CrossRefGoogle Scholar
Lavergnat, J., Lehner, T. & Matthieussent, G. (1984). Coherent spontaneous emission from a modulated beam injected in a magnetized plasma. Phys. Fluids 27, 16321639.CrossRefGoogle Scholar
Lee, M.J. & Jung, Y.D. (2005). Magnetic field effects on surface ion plasma wave in semi-bounded magnetized dusty plasma. Z. Natursch. 60, 503506.Google Scholar
Lee, S.C., Krishna, S. & Brueck, S.R.J. (2010). Surface plasma wave excitation at a 2-D corrugated metal/semiconductor interface for infrared photodetectors. AIP Proceedings of the 30 thConference on Physics Semiconductors.Google Scholar
Liu, C.S. & Tripathi, V.K. (2007). Electromagnetic Theory for Telecommunications. Cambridge: Cambridge university press.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V. K. (2000). Excitation of surface plasma waves over metallic surfaces by lasers and electron beams. IEEE Trans. Plasma Sci. 28, 353358.Google Scholar
Ostrikov, K.N., Yu, M.Y. & Sugai, H. (1999). Standing surface waves in a dust-contaminated large-area planar plasma source. J. Appl. Phys. 86, 24252430.CrossRefGoogle Scholar
Paknezhad, A. & Dorranian, D. (2011). Nonlinear backward Raman scattering in the short laser pulse interaction with a cold underdense transversely magnetized plasma. Laser Part. Beams 29, 373380.CrossRefGoogle Scholar
Parashar, J., Pandey, H.D. & Tripathi, V.K. (1998). Laser excitation of surface waves over a dense plasma. J. Plasma Phys. 59, 97102.CrossRefGoogle Scholar
Prakash, V. & Sharma, S.C. (2009). Excitation of surface plasma waves by an electron beam in a magnetized dusty plasma. Phys. Plasmas 16, 09370310937039.CrossRefGoogle Scholar
Saini, N.S. & Gill, T.S. (2006). Self-focusing self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Sharma, R.P., Monika, A., Sharma, P., Chauhan, P. & Ji, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Parti. Beams 28, 531537.CrossRefGoogle Scholar
Sharma, S.C. & Srivastava, M.P. (2001). Ion beam driven ion-cyclotron waves in a plasma cylinder with negative ions. Phys. Plasmas 8, 679686.CrossRefGoogle Scholar
Sharma, S.C. & Sugawa, M. (1999). The effect of dust charge fluctuations on ion cyclotron wave instability in the presence of an ion beam in a plasma cylinder. Phys. Plasmas 6, 444448.CrossRefGoogle Scholar
Sharma, S.C. & Walia, R. (2008). Excitation of lower hybrid waves by a spiraling ion beam in a magnetized dusty plasma cylinder. Phys. Plasmas 15, 09370310937035.CrossRefGoogle Scholar
Smolyaninov, I.I., Elliott, J., Zayats, A.V. & Davis, C.C. (2005). Far-field optical microscopy with a nanometer-scale resolution based on the in-phase image magnification by surface plasmon polaritons. Phy. Rev. Lett. 94, 05740110574014.CrossRefGoogle Scholar
Shukla, P.K. & Eliasson, B. (2009). Fundamentals of dust-plasma interactions. Rev. Mod. Phys. 81, 2544.CrossRefGoogle Scholar
Shukla, P.K. & Mamun, A.A. (2002). Introduction to Dusty Plasma Physics. Institute of Physics, Bristol, UK.CrossRefGoogle Scholar
Trivelpiece, A.W. & Gould, R.W. (1959). Space charge waves in cylindrical plasma columns. J. Appl. Phys. 30, 17841793.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser and Particle Beams 29, 471477.CrossRefGoogle Scholar
Welsh, G.H., Hunt, N.T. & Wynne, K. (2007). Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating. Phys. Rev. Lett. 98, 026803026806.CrossRefGoogle Scholar