Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T02:13:12.275Z Has data issue: false hasContentIssue false

Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser

Published online by Cambridge University Press:  08 January 2009

M.S. Trtica*
Affiliation:
Departments of Physical Chemistry and Atomic Physics, VINCA Institute of Nuclear Sciences, Belgrade, Serbia
B.B. Radak
Affiliation:
Departments of Physical Chemistry and Atomic Physics, VINCA Institute of Nuclear Sciences, Belgrade, Serbia
B.M. Gakovic
Affiliation:
Departments of Physical Chemistry and Atomic Physics, VINCA Institute of Nuclear Sciences, Belgrade, Serbia
D.S. Milovanovic
Affiliation:
Departments of Physical Chemistry and Atomic Physics, VINCA Institute of Nuclear Sciences, Belgrade, Serbia
D. Batani
Affiliation:
Dipartimento di Fisica “G. Occhialini,”Universita degli Studi di Milano Bicocca, Milano, Italy
T. Desai
Affiliation:
Dipartimento di Fisica “G. Occhialini,”Universita degli Studi di Milano Bicocca, Milano, Italy
*
Address correspondence and reprint requests to M. S. Trtica, Department of Physical Chemistry, VINCA Institute of Nuclear Sciences, P.O. BOX 522, 11001 Belgrade, Serbia. E-mail: [email protected]

Abstract

Interaction of a Nd:YAG laser, operating at wavelengths of 1064 nm (23.6 J cm−2 fluence) or 532 nm (25.9 J cm−2 fluence), and pulse duration of 40 ps, with a titanium-based medical implant Ti6Al4V alloy was studied. Surface damage thresholds were estimated to be 0.9 J cm−2 and 0.25 J cm−2 at laser wavelengths 1064 nm and 532 nm, respectively. At both laser wavelengths, the energy absorbed was mostly converted into thermal energy, forming craters, albeit about 50 times deeper at 1064 nm than at 532 nm. Periodic surface structures (PSS) were also formed with both laser wavelengths, concentric, and radial at micrometer scale (3 µm to 15 µm period), parallel at nanometer scale (800 nm period with the 1064 nm laser, 400 nm with the 532 nm laser). In the case of the 532 nm laser, the concentric structures enlarge their period with accumulating laser pulse count. These features can help roughening of the implant surface and improve bio-compatibility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, J., Batani, D., Desai, T., Lucchini, G., Faenov, A., Pikuz, T., Magunov, A. & Narayanan, V. (2007). High resolution X-ray emission spectra from picosecond laser irradiated Ge targets. Laser Part. Beams 25, 245252.Google Scholar
Abdellatif, G. & Imam, H. (2002). A study of the laser plasma parameters at different laser wavelengths. Spectrochimica Acta B 57, 11551165.Google Scholar
Alti, K. & Khare, A. (2006). Sculpted pulsed indium atomic beams via selective laser ablation of thin film. Laser Part. Beams 24, 469473.Google Scholar
Barker, A.S. Jr., Verleur, H.W. & Guggenheim, H.J. (1966). Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys. Rev. Lett. 17, 12861289.CrossRefGoogle Scholar
Bereznai, M., Pelsoczi, I., Toth, Z., Turzo, K., Radnai, M., Bor, Z. & Fazekas, A. (2003). Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomat. 24, 41974203.CrossRefGoogle ScholarPubMed
Bever, M.B. (1986). Titanium: Alloying. In Encyclopedia of Materials Science and Engineering, Vol. 7, pp. 5086. Oxford: Pergamon Press.Google Scholar
Bussoli, M., Batani, D., Desai, T., Canova, F., Milani, M., Trtica, M., Gakovic, B. & Krousky, E. (2007). Study of laser induced ablation with focused ion beam/scanning electron microscope devices. Laser Part. Beams 25, 121125.Google Scholar
Combis, P., Cazalis, B., David, J., Froger, A., Louis-Jacquet, M., Meyer, B., Niérat, G., Salères, A., Sibille, G., Thiell, G. & Wagon, F. (1991). Low-fluence laser target coupling. Laser Part. Beams 9, 403420.Google Scholar
Gakovic, B., Trtica, M., Batani, D., Desai, T., Panjan, P. & Vasiljevic-Radovic, D. (2007). Surface modification of titanium nitride film by a picosecond Nd:YAG laser. J. Opt. A 9, S76S80.Google Scholar
Guillemot, F., Prima, F., Tokarev, V.N., Belin, C., Porte-Durrieu, M.C., Gloriant, T., Baquey, C. & Lazare, S. (2004). Single-pulse KrF laser ablation and nanopatterning in vacuum of β-titanium alloys used in biomedical application. Appl. Phys. A 79, 811813.Google Scholar
Khosroshahi, M.E., Mahmoodi, M. & Tavakoli, J. (2007). Characterization of Ti6Al4V implant surface treated by Nd:YAG laser and emery paper for orthopaedic applications. Appl. Surf. Sci. 253, 87728781.Google Scholar
Lakshmi, S.G., Arivuoli, D. & Ganguli, B. (2002). Surface modification and characterisation of Ti–Al–V alloys. Mat. Chem. Phys. 76, 187190.Google Scholar
Le Harzic, R., Schuck, H., Sauer, D., Anhut, T., Riemann, I. & König, K. (2005). Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt. Express 13, 66516656.Google Scholar
Long, M. & Rack, H.J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomat. 19, 16211639.Google Scholar
Marmy, P., Leguey, T., Belianov, I. & Victoria, M. (2000). Tensile and fatigue properties of two titanium alloys as candidate materials for fusion reactors. J. Nucl. Mat. 283–287, 605606.Google Scholar
Mirhosseini, N., Crouse, P.L., Schmidth, M.J.J., Li, L. & Garrod, D. (2007). Laser surface micro-texturing of Ti–6Al–4V substrates for improved cell integration. Appl. Surf. Sci. 253, 77387743.Google Scholar
Nedialkov, N.N., Atanasov, P.A., Imamova, S.E., Ruf, A., Berger, P. & Dausinger, F. (2004). Dynamics of the ejected material in ultra-short laser ablation of metals. Appl. Phys. A 79, 11211125.Google Scholar
Petrovic, S., Gakovic, B., Trtica, M. & Nenadovic, T. (2001). Surface modification of W-Ti coatings induced by TEA CO2 laser beam. Laser Part. Beams 19, 195199.Google Scholar
Sittig, C., Textor, M., Spencer, N.D., Wieland, M. & Vallotton, P.H. (1999). Surface characterization. J. Mat. Sci 10, 3546.Google ScholarPubMed
Tan, B. & Venkatakrishnan, K. (2006). A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microengin. 16, 10801085.CrossRefGoogle Scholar
Tarasenko, V.F., Fedenev, A.V., Goncharenko, I.M., Kovali, N.N., Lipatov, E.I., Orlovskii, V.M. & Shulepov, M.A. (2002). UV and IR laser interaction with metal surfaces. SPIE Proc. 4760, 93102.Google Scholar
Tian, Y.S., Chen, C.Z., Li, S.T. & Huo, Q.H. (2005). Research progress on laser surface modification of titanium alloys. Appl. Surf. Sci. 242, 177184.Google Scholar
Trtica, M., Gakovic, B., Batani, D., Desai, T., Panjan, P. & Radak, B. (2006). Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Appl. Surf. Sci. 253, 25512556.Google Scholar
Trtica, M.S., Gakovic, B.M., Radak, B.B., Batani, D., Desai, T. & Bussoli, M. (2007). Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses. Appl. Surf. Sci. 254, 13771381.Google Scholar
Vorobyev, A.Y. & Guo, C. (2007). Femtosecond laser structuring of titanium implants. Appl. Surf. Sci. 253, 72727280.CrossRefGoogle Scholar
Zelinski, A., Jazdzewska, M., Narozniak-Luksza, A. & Serbinski, W. (2006). Surface structure and properties of Ti6A4V alloy laser melted at cryogenic conditions. J. Achiev. Mat. Manufact. Engin. 18, 423426.Google Scholar