Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T14:37:39.005Z Has data issue: false hasContentIssue false

Study on two-dimensional transfer of radiative heating wave

Published online by Cambridge University Press:  30 August 2005

KE LAN
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
TINGGUI FENG
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
DONGXIAN LAI
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
YAN XU
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China
XUJUN MENG
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, China

Abstract

A two-dimensional (2D) multigroup radiation transfer hydrodynamics code LARED-R-1 is used to simulate a supersonic wave experiment performed earlier by the Livermore group. The main result is that, contrary to the conclusion of Back et al. (2000a), the average-atom opacity model is sufficient to explain the obtained experimental results, provided that an adequate description of the radiation transport was used. The simulation results from LARED-R-1 show the spectrum of radiation in foam with radius and length of several optical depths is not in Planckian distribution and the angular intensity distribution is anisotropic.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afshar-rad, T., Desselberger, M., Dunne, M., Edwards, J., Foster, J.M., Hoarty, D., Jones, M.W., Rose, S.J., Rosen, P.A., Taylor, R. & Willi, O. (1994). Supersonic propagation of an ionization front in low density foam targets driven by thermal radiation. Phys. Rev. Lett. 73, 74.CrossRefGoogle Scholar
Back, C.A., Bauer, J.D., Landen, O.L., Turner, R.E., Lasinski, B.F., Hammer, J.H., Rosen, M.D., Suter, L.J. & Hsing, W.H. (2000a). Detailed measurements of a diffusive supersonic wave in a radiatively heated foam. Phys. Rev. Lett. 84, 274.Google Scholar
Back, C.A., Bauer, J.D., Hammer, J.H., Lasinski, B.F., Turner, R.E., Rambo, P.W., Landen, O.L., Suter, L.J., Rosen, M.D. & Hsing, W.H. (2000b). Diffusive, supersonic x-ray transport in radiatively heated foam cylinders. Phys. Plasmas 7, 2125.Google Scholar
Barnard, J.J., Ahle, L.E., Bieniosek, F.M., Celata, C.M., Davidson, R.C., Henestroza, E., Friedman, A., Kwan, J.W., Logan, B.G., Lee, E.P., Lund, S.M., Meier, W.R., Sabbi, G.L., Seidl, P.A., Sharp, W.M., Shuman, D.B., Waldron, W.L., Qin, H. & Yu, S.S. (2003). Integrated experiments for heavy ion fusion. Laser Part. Beams 21, 553560.CrossRefGoogle Scholar
Basko, M.M. & Meyer-ter-Vehn, J. (1993). Hotraum target for heavy ion inertial fusion. Nucl. Fusion 33, 601.CrossRefGoogle Scholar
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Y.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505509.Google Scholar
Chaikovsky, S.A., Labetsky, A.Y., Oreshkin, V.I., Shishlov, A.V., Baksht, R.B., Fedunin, A.V. & Rousskikh, A.G. (2003). The K-shell radiation of a double gas puff z-pinch with an axial magnetic field. Laser Part. Beams 21, 255264.Google Scholar
Feng, T. (1995). Coupling transport diffusion method of calculating radiation transfer in a cavity. Comp. Phys. 12, 375 (in Chinese).Google Scholar
Feng, T., Lai, D. & Xu, Y. (1999). An artificial iteration method for calculating multi-group radiation transfer problems. Comp. Phys. 16, 199 (in Chinese).Google Scholar
Feng, T., Lan, K. & Lai, D. (2001). A comparison between two averaging methods of multi-group parameters in ICF radiation transfer calculation. Comp. Phys. 18, 206 (in Chinese).Google Scholar
Kaiser, N., Meyer-ter-Vehn, J. & Sigel, R. (1989). The X-ray-driven heating wave. Phys. Fluids B 1, 1747.CrossRefGoogle Scholar
Lewis, E.E. & Miller, W.F., Jr. (1984). Computational Methods of Neutron Transport. New York: Wiley.
Marshak, R.E. (1958). Effect of Radiation on Shock Wave Behavior. Phys. Fluids 1, 24.CrossRefGoogle Scholar
Massen, J., Tsakiris, G.D., Eidmann, K., Foldes, I.B., Lower, Th., Sigel, R., Witkowski, S., Nishimura, H., Endo, T., Shiraga, H., Takagi, M., Kato, Y. & Nakai, S. (1994). Supersonic radiative heat waves in low-density high-Z material. Phys. Rev. E 50, 5130.CrossRefGoogle Scholar
Menart, J. (2000). Radiative transport in a two-dimensional axissymmetric thermal plasma using the S-N discrete ordinates method on a line-by-line basis. J. Quant. Spectro. Rad. Transfer 67, 273.Google Scholar
Niemann, C., Penache, D., Tauschwitz, A., Rosmej, F.B., Neff, S., Birkner, R., Constantin, C., Knobloch, R., Presura, R., Yu, S.S., Sharp, W.M., Ponce, D.M. & Hoffmann, D.H.H. (2003). Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion. Laser Part. Beams 21, 1315.Google Scholar
Philippe, F., Canaud, B., Fortin, X., Garaude, F. & Jourdren, H. (2004). Effects of microstructure on shock propagation in foams. Laser Part. Beams 22, 171174.CrossRefGoogle Scholar
Schwanda, W. & Eidmann, K. (1992). Observation of radiative burnthrough in X-ray heated beryllium by time-resolved spectroscopy. Phys. Rev. Lett. 69, 3507.CrossRefGoogle Scholar
Sigel, R., Tsakiris, G.D., Lavarenne, F., Massen, J., Fedosejevs, R., Meyer-ter-Vehn, J., Murakami, M., Eidmann, K. & Witkowski, S. (1990). Experimental observation of laser-induced radiation heat waves. Phys. Rev. Lett. 65, 587.CrossRefGoogle Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York: Academic.