Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T20:55:28.153Z Has data issue: false hasContentIssue false

A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR

Published online by Cambridge University Press:  19 March 2009

E.R. Koresheva*
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
I.V. Aleksandrova
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
E.L. Koshelev
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
A.I. Nikitenko
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
T.P. Timasheva
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
S.M. Tolokonnikov
Affiliation:
P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
A.A. Belolipetskiy
Affiliation:
A.A. Dorodnitsin Computing Centre, Russian Academy of Sciences, Moscow, Russia
V.G. Kapralov
Affiliation:
St. Petersburg State Polytechnical University, St. Petersburg, Russia
V. Yu. Sergeev
Affiliation:
St. Petersburg State Polytechnical University, St. Petersburg, Russia
A. Blazevic
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
K. Weyrich
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
D. Varentsov
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
N.A. Tahir
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
S. Udrea
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany
D.H.H. Hoffmann
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany
*
Address correspondence and reprint requests to: E.R. Koresheva, P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia. E-mail: [email protected]

Abstract

Cylindrical cryogenic targets are required to carry out the Laboratory Planetary Science scheme of the experiments of the High Energy Density matter Generated by Heavy Ion Beams collaboration at FAIR. In this paper, for the first time a thorough analysis of the problem of such targets' fabrication, delivery and positioning in the center of the experimental chamber has been made. Particular attention is paid to the issue of a specialized cryogenic system creation intended for rep-rate supply of the High Energy Density matter Generated by Heavy Ion Beams experiments with the cylindrical cryogenic targets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I.V., Koresheva, E.R. & Osipov, I.E. (1999). Free - standing targets for applications to ICF. Laser Part. Beams 17, 713727.CrossRefGoogle Scholar
Aleksandrova, I.V., Bazdenkov, S.V., Chtcherbakov, V.I., Koresheva, E.R., Koshelev, E.L., Osipov, I.E. & Yaguzinskii, L.V. (2004). An Efficient method of fuel ice formation in moving free standing ICF/IFE targets. J. Appl. Phys. D 37 11631179.CrossRefGoogle Scholar
Aleksandrova, I.V., Belolipeckiy, A.A., Blazevic, A., Hoffmann, D.H.H., Kapralov, V.G., Koresheva, E.R., Nikitenko, A.I., Sergeev, V.Yu., Tahir, N.A., Timasheva, T.P., Tolokonnikov, S.M., Udrea, S., Varentsov, D. & Weyrich, A.K. (2008). Cryogenic cylindrical targets for experiments on the low-entropy compression of the fuel matter generated by the interaction of intense heavy ion beams. In Book of Abstracts. XXXV International Conference on Plasma Physics and Confinement Fusion.Zvenigorod, Russia.Google Scholar
Alekseeva, L.A., Strjemechnyi, M.A. & Chtcherbakov, G.N. (1995). Vlijanie primesi neona na nizkotemperaturnuju plastichnost n-H2 (Influence of neon additive on low-temperature plasticity of H2). Fizika Nizkih Temp. 21, 983985.Google Scholar
Alekseeva, L.A., Strjemechnyi, M.A. & Butenko, Yu.V. (1997). Low-temperature plasticity of dilute solid solutions of Ne in n-H2. Fizika Nizkih Temp. 23, 448457.Google Scholar
Alekseeva, L.A., Syrkin, E.S. & Vashenko, L.A. (2003). Low-temperature plasticity and dynamics of a lattice of solid para-hydrogen with isotopic impurity. Fizika Tverdogo Tela 45, 10241028.Google Scholar
Beliaev, N.M. & Riadno, A.A. (1993). Mathematical Methods of Heat Conduction. Kiev: Naukova Dumka.Google Scholar
Born, M. & Wolf, E. (1999). Principles of Optics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bushman, A.V. & Fortov, V.E. (1983). Models of equation of the matter state. Uspekhi Fizicheskikh Nauk 140, 177232.CrossRefGoogle Scholar
Chaurasia, S., Munda, D.S., Ayyub, P., Kulkarni, N., Gupta, N.K. & Dhareshwar, L.J. (2008). Laser plasma interaction in copper nano-particle targets. Laser Part. Beams 26, 473478.CrossRefGoogle Scholar
Combs, S.K. (1993). Pellet injection technology. Rev. Sci. Instrum. 67, 16791698.CrossRefGoogle Scholar
Combs, S.K. & Foust, C.R. (1997). New extruder-based deuterium feed system for centrifuge pellet injection. Rev. Sci. Instrum. 68, 44484457.CrossRefGoogle Scholar
Combs, S.K., Baylor, L.R., Fisher, P.W., Foust, C.R., Gouge, M.J., Pavarin, D., Sakamoto, R., Twynam, P., Watson, M. & Yamada, H. (2001). ORNL mock-up tests of inside launch pellet injection on JET and LHD. Fusion Eng. Des. 58–59, 343347.CrossRefGoogle Scholar
Combs, S.K., Baylor, L.R., Caughman, J.B.O., Foust, C.R., Jernigan, T.C., Maruyama, S., McGill, J.M., Rasmussen, D.A., Ridenaur, J.A. & Watson, M. (2004). Pellet delivery and survivability through curved guide tubes for fusion fueling and its implications for ITER. Report, contract DE-AC05-00OR22725. Oak Ridge, TN: Oak Ridge National Laboratory.Google Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Di Bernardo, A., Courtois, C., Cros, B., Matthieussent, G., Batani, D., Desai, T., Strati, F. & Lucchini, G. (2003). High-intensity ultrashort laser-induced ablation of stainless steel foil targets in the presence of ambient gas. Laser Part. Beams 21, 5964.CrossRefGoogle Scholar
Eliezer, S., Murakaml, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Friedman, W.D., Halpern, G.M. & Brinker, B.A. (1974). Target fabrication and positioning techniques for laser fusion experiments. Rev. Sci. Instrum. 45, 12451252.CrossRefGoogle Scholar
Fortov, V.E., Hoffmann, D.H.H. & Sharkov, B.Y. (2008). Intense ion beams for generating extreme states of matter. Phys.-Uspekhi. 51, 109131.CrossRefGoogle Scholar
Funk, U.N., Bock, R., Dornik, M., Geissel, M., Stetter, M., Stowe, S., Tahir, N. & Hoffmann, D.H.H. (1998). High energy density in solid rare gas targets and solid hydrogen. Nucl. Instr. & Meth. Phys. Res. A 415, 6874.CrossRefGoogle Scholar
Grilly, E.R., Hammel, J.E., Rodriguez, D.J., Scudder, D.W. & Shlachter, J.S. (1985). Production of solid D2 threads for dense Z-pinch plasmas. Rev. Sci. Instrum. 56, 18851887.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Korostiy, S., Ni, P., Pikuzc, S.A., Rethfeld, B., Rosmej, O., Roth, M., Tahir, N.A., Udrea, S., Varentsov, D., Weyrich, K., Sharkov, B.Y. & Maron, Y. (2007). Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt. Nucl. Instr. & Meth. Phys. Res. A 577, 813.CrossRefGoogle Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 36513654.CrossRefGoogle Scholar
Hoffmann, D.H.H., Jacoby, J., Laux, W., Demagistris, M., Boggasch, E., Spiller, P., Stockl, C., Tauschwitz, A., Weyrich, K., Chabot, M. & Gardes, D. (1994). Energy-loss of fast heavy-ions in plasmas. Nucl. Instr. & Meth. Phys. Res. B 90, 19.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.CrossRefGoogle Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.CrossRefGoogle Scholar
Koresheva, E.R., Merkuliev, Yu.A., Nikitenko, A.I., Osipov, I.E. & Tolokonnikov, S.M. (1988). The peculiarities of laser cryogenic targets destruction and their injection into a powerful laser focus. Laser Part. Beams 6, 245253.CrossRefGoogle Scholar
Koresheva, E.R., Aleksandrova, I.V., Osipov, I.E., Bazdenkov, S.V., Chtcherbakov, V.I., Koshelev, E.L., Nikitenko, A.I., Tolokonnikov, S.M., Yaguzinskiy, L.S., Baranov, G.D., Safronov, A.I., Timofeev, I.D., Kuteev, B.V. & Kapralov, V.G. (2003). Progress in the Extension of Free-Standing Target Technologies on IFE Requirements. Fusion Sci. Technol. 35, 290300.CrossRefGoogle Scholar
Koresheva, E.R., Osipov, I.E., Tolokonnikov, S.M., Petrovskiy, V.V., Rezgol, I.A. & Baranov, G.D. (2004). Protective sabot for cryogenic target delivery to the laser focus. Voprosy Atomnoi Nauki I Techniki, ser. Thermonuclear Fusion, 2, 1124.Google Scholar
Krause, H. (1973). Apparatus for producing sticks of solid deuterium. J. Phys. E 6, 11321134.CrossRefGoogle Scholar
Krupskiy, I.N., Leontieva, A.V., Indan, L.N. & Evdokimova, O.V. (1976). Peculiarity of low-temperature plasticity of solid hydrogen. Pis'ma v JETF 24, 297300.Google Scholar
Krupskiy, I.N., Leontieva, A.V., Indan, L.N. & Evdokimova, O.V. (1977). A solid body plastic deformation. Fizika Nizkih Temperatur 3, 933940.Google Scholar
Kuteev, B.V., Viniar, I.V., Sergeev, V.Yu., Tsendin, L.D. & Kapralov, V.G. (1994). Development of an ITER pellet fueling system in Russia. Fusion Technol. 26, 642652.CrossRefGoogle Scholar
Lichtenecker, K. (1926). Dielectric constant of natural and synthetic mixtures. Phys.Zeitschrift 27, 115158.Google Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams vol. 25, 567584.CrossRefGoogle Scholar
Malkov, M.P., Danilov, I.B., Zeldovich, A.G. & Fradkov, A.B. (1973). Handbook on the physics-chemical bases of cryogenics. Moscow: Energia, 392 p.Google Scholar
Meyertervehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the Gesellschaft-fur-Schwerionenforschung. Phys. Fluids B 2, 13131317.CrossRefGoogle Scholar
Neuner, U., Bock, R., Roth, M., Spiller, P., Constantin, C., Funk, U.N., Geissel, M., Hakuli, S., Hoffmann, D.H.H., Jacoby, J., Kozyreva, A., Tahir, N.A., Udrea, S., Varentsov, D. & Tauschwitz, A. (2000). Shaping of intense ion beams into hollow cylindrical form. Phys. Rev. Lett. 85, 45184521.CrossRefGoogle ScholarPubMed
Pechacek, R.E., Greig, J.R., Raleigh, M., DeSilva, A.W. & Koopman, D.W. (1981). Plasma production by staged laser irradiation of mm-size deuterium pellets. Rev.Sci.Instrum. 52, 371376.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Cela, J.J.L., Cortazar, O.D., Moreno, M.C.S., Temporal, M. & Hoffmann, D.H.H. (2007). Analytical models for the design of the LAPLAS experiment. Contrib. Plasma Phy. 47, 213222.CrossRefGoogle Scholar
Prut, V.V. & Shibaev, S.A. (1990). Injector of hydrogen pellet. Preprint IAE 5258/7, Moscow: Russian Research Center “Kurchatov Institute”, 20 p.Google Scholar
Sakamoto, H., Yamada, H., Takeiri, Y., Narihara, K., Tokuzawa, T., Suzuki, H., Masuzaki, S., Sakakibara, S., Morita, S., Goto, M., Peterson, B.J., Matsuoka, K., Ohyabu, N., Komori, A., Motojima, O. & the LHD experimental group. (2006). Repetitive pellet fuelling for high-density/steady-state operation on LHD. Nucl. Fusion 46, 884889.CrossRefGoogle Scholar
Sethian, J.D., Gerber, K.A. & Sy, M.O. (1987). Solid deuterium fiber extruder. Rev. Sci. Instrum. 58, 536538.CrossRefGoogle Scholar
Siegel, R. & Howell, J.B. (1972). Thermal Radiation Heat Transfer. New York: McGrow Hill.Google Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Neuner, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2000). Metallization of hydrogen using heavy-ion-beam implosion of multilayered cylindrical targets. Phys.Rev. E 63, 016402/1-9.CrossRefGoogle ScholarPubMed
Tahir, N.A., Udrea, S., Deutsch, C., Fortov, V.E., Grandjouan, G., Gryaznov, V., Hoffmann, D.H.H., Hulsmann, P., Kirk, M., Lomonosov, I.V., Piriz, A.R., Shutov, A., Spiller, P., Temporal, M. & Varentsov, D. (2004). Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS 100 and optimization of spot size and pulse length. Laser Part. Beams 22, 485493.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Grayaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Meth. Phys. Res. A 544,1626.CrossRefGoogle Scholar
Tahir, N.A., Lomonosov, I.V., Shutov, A., Udrea, S., Deutsch, C., Fortov, E., Gryaznov, V., Hoffmann, D.H.H., Jacobi, J., Kain, V., Kuster, M., Ni, P., Piriz, A.R., Schmidt, R., Spiller, P., Varentsov, D. & Zioutas, K. (2006 a). Proposed studies of strongly coupled plasmas at the future FAIR and LHC facilities: The HEDgeHOB collaboration. J. Phys. A 39, 47554763.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Varentsov, D. (2006 b). Studies of equation of state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration. Nucl. Instrum. Meth. Phys. Res. B 245, 8593.CrossRefGoogle Scholar
Tahir, N.A., Shutov, A., Lomonosov, I.V., Piriz, A.R., Wouchuck, G., Deutch, C., Hoffmann, D.H.H. & Fortov, V.E. (2006 c). Numerical simulations and theoretical analysis of High Energy Density experiments at the next generation of ion beam facilities at Darmstadt: The HEDgeHOB collaboration. High Ener. Density Phys. 2, 2134.CrossRefGoogle Scholar
Tahir, N.A., Shutov, A., Lomonosov, I.V., Gryaznov, V., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H., Ni, P., Piriz, A.R., Udrea, S., Varentsov, D. & Wouchuk, G. (2006 d). Studies of thermophysical properties of high-energy-density states in matter using intense heavy ion beams at the future FAIR accelerator facilities: The HEDgeHOB collaboration. J. De Phys. IV 133, 10591064.Google Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 a). Survey of theoretical work for the proposed HEDgeHOB experimental schemes: HIHEX and LAPLAS. Contrib. Plasma Phys. 47, 223233.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). HEDgeHOB: High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Meth. Phys. Res. A 577, 238249.CrossRefGoogle Scholar
Tahir, N.A., Weick, H., Shutov, A., Kim, V., Matveichev, A., Ostrik, A., Sultanov, V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008 a). Simulations of a solid graphite target for high intensity fast extracted uranium beams for the Super-FRS. Laser Part. Beams 26, 411423.CrossRefGoogle Scholar
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008 b). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137142.CrossRefGoogle Scholar
Varentsov, D., Ternovoi, V.Y., Kulish, M., Fernengel, D., Fertman, A., Hug, A., Menzel, J., Ni, P., Nikolaev, D.N., Shilkin, N., Turtikov, V., Udrea, S., Fortov, V.E., Golubev, A.A., Gryaznov, V.K., Hoffmann, D.H.H., Kim, V., Lomonosov, L., Mintsev, V., Sharkov, B.Y., Shutov, A., Spiller, P., Tahir, N.A. & Wahl, H. (2007). High-energy-density physics experiments with intense heavy ion beams. Nucl. Instrum. Meth. Phys. Res. A 577, 262266.CrossRefGoogle Scholar
Viniar, I.V., Skoblikov, S.V. & Koblenz, P.Yu. (1997). Injector of hydrogen microparticles with screw extruder. Pis'ma v J. Tehnicheskoi Fiziki 23, 4346.Google Scholar
Viniar, I.V. (1999). Periodic injector s poristym formirovatelem dlja vvoda topliva v plazmu. J. Tehnicheskoi Fiziki 69, 3539.Google Scholar
Viniar, I.V. & Lukin, A.Y. (2000). Screw extruder of solid hydrogen. J. Tehnicheskoi Fiziki 70, 107112.Google Scholar
Viniar, I.V., Geraud, A., Yamada, H., Sakamoto, R., Oda, Y., Lukin, A., Umov, A., Skoblikov, S., Gros, G., Saksaganskiy, G., Reznichenko, P., Krasilnikov, I. & Panchenko, V. (2004). Pellet injectors developed at the Pelin laboratory for steady-state plasma fuelling. Plasma Sci. Technol. 6, 22862290.CrossRefGoogle Scholar
Yang, H., Nagai, K., Nakai, N. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, 449453.CrossRefGoogle Scholar
Zvorykin, V.D., Berthe, L., Boustie, M., Levchenko, A.O. & Ustinovskii, N.N. (2008). Planar shock waves in liquids produced by high-energy KrF laser: A technique for studying hydrodynamic instabilities. Laser Part. Beams 26, 461471.CrossRefGoogle Scholar