Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T20:25:17.017Z Has data issue: false hasContentIssue false

Stopping power of heavy ions in strongly coupled plasmas

Published online by Cambridge University Press:  09 March 2009

G. Zwicknagel
Affiliation:
Institut für Theoretische Physik II, Universität Erlangen, D-91058 Erlangen, Germany
C. Toepffer
Affiliation:
Institut für Theoretische Physik II, Universität Erlangen, D-91058 Erlangen, Germany
P.-G. Reinhard
Affiliation:
Institut für Theoretische Physik II, Universität Erlangen, D-91058 Erlangen, Germany

Abstract

We investigate the stopping power of heavy ions in strongly coupled electron plasmas by performing molecular dynamics (MD) computer simulations. A comparison with conventional weak coupling theories shows that these fail in describing the stopping power at low ion velocities and strong coupling. Then nonlinear screening effects become important and this causes a change in the dependence of the stopping power on the ion charge Zp at low ion velocities. From the MD simulation, we find the stopping power to behave like ZP1.43 instead of the weak coupling behavior Zp2 ln(const/Zp). Similar results were recently obtained by experiments in connection with electron cooling at heavy ion storage rings.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M.P. & Tudesley, D.J. 1987 Computer Simulation of Liquids (Clarendon Press, Oxford).Google Scholar
Armbrϋster, G. & Toepffer, C. 1993 Nucl. Instrum. Methods A 333, 282.CrossRefGoogle Scholar
Arnold, R.C. & Meyer-Ter-Vehn, J. 1987 Rep. Prog. Phys. 50, 559.CrossRefGoogle Scholar
Bock, R. et al. 1988 In Proceedings of Heavy Ion Inertial Fusion Symposium, Darmstadt, FRG, Nucl. Instrum. Methods A 278, 1292.Google Scholar
Bret, A. & Deutsch, C. 1993 Phys. Rev. E47, 1276.Google Scholar
D'Avanzo, J. et al. 1992 Phys. Rev. A 45, 6126.CrossRefGoogle Scholar
De Ferrariis, L. & Arista, N.R. 1984 Phys. Rev. A 29, 2145.CrossRefGoogle Scholar
Deutsch, C. & Tahir, N.A. 1992 Phys. Fluids B 4, 3735.CrossRefGoogle Scholar
Hansen, J.P. & McDonald, I.R. 1981 Phys. Rev. A 23, 2041.CrossRefGoogle Scholar
Hansen, J.P. & McDonald, I.R. 1986 Theory of Simple Liquids (Academic Press, London).Google Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics (Benjamin, Reading, Massachusetts).Google Scholar
Peter, Th. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 1998.CrossRefGoogle Scholar
Peter, Th. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 2015.CrossRefGoogle Scholar
Poth, H. 1990 Phys. Rep. 196, 135.CrossRefGoogle Scholar
Sigmund, P. 1982 Phys. Rev. A 26, 2497.CrossRefGoogle Scholar
Sørensen, A.H.Bonderup, E. 1983 Nucl. Instrum. Methods 215, 27.CrossRefGoogle Scholar
Steck, M. et al. 1994 In Proceedings of the Workshop on Beam Cooling and Related Topics, Montreux, 10 1993, CERN 94103.Google Scholar
Vicanek, M. et al. 1992 Phys. Rev. A 46, 5745.CrossRefGoogle Scholar
Wolf, A. et al. 1994 In Proceedings of the Workshop on Beam Cooling and Related Topics, Montreux, 10 1993, CERN 94103.Google Scholar
Zwicknagel, G. et al. 1993a In Proceedings of the VII International Workshop on the Physics of Nonideal Plasmas, Rostock-Markgrafenheide, Germany, 09 1993, Contrib. Plasma Phys. 33, 395398.Google Scholar
Zwicknagel, G. et al. 1993b In Proceedings of the International Symposium on Heavy Ion Inertial Fusion, Frascati Italy, 05 1993 II Nuovo Cimento 106 A, 1857.Google Scholar
Zwicknagel, G. 1994 Ph.D. Thesis, Universität Erlangen.Google Scholar