Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:00:17.725Z Has data issue: false hasContentIssue false

Stimulated scattering from laser produced plasma

Published online by Cambridge University Press:  09 March 2009

A. A. Offenberger
Affiliation:
Department of Electrical Engineering
J. Santiago
Affiliation:
Department of Electrical Engineering
M. Fujita
Affiliation:
Department of Electrical Engineering
R. Fedosejevs
Affiliation:
Department of Electrical Engineering
W. Rozmus
Affiliation:
Department of Physics University of Alberta, Edmonton, Alberta, Canada T6G 2E1

Abstract

Stimulated Brillouin and Raman scattering are of considerable interest because of their importance to basic nonlinear plasma physics phenomena and to laser-driven inertial confinement fusion. Induced scattering can be substantial for high intensity (I), long wavelength (λ) lasers because the instability growth rates depend exponentially on Jλ2, and also for short wavelength, long scalelength (L) laser/plasma interaction because of nearly homogeneous or large convective gain conditions. Experimental results from both KrF and CO2 laser/plasma interaction studies are presented to illustrate important wavelength dependent features of induced scattering such as the nature of the instability (absolute, convective), threshold, spectra, reflectivity and saturation effects. Backscattering characteristics have been measured for solid target plasmas (aluminum, gold) produced by KrF laser pulses focused to intensities <1014 W/cm2 and gas targets (hydrogen, oxygen) by CO2 laser pulses at intensities <1013 W/cm2. Collisional absorption dominates the KrF laser experiments, whereas particle heating and increased Landau damping dominate the CO2 laser experiments. Current theoretical work concerned with nonlinear effects in Langmuir wave localization, wave collapse and particle heating (generating characteristic high temperature electrons) is also presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, C. H. et al. 1986 Plasma Phys. Controlled Fusion 10, 1.Google Scholar
Baldis, H. A. et al. 1988 Submitted for publication (1988).Google Scholar
Chegotov, M. V. et al. 1986 Plasma Physics and Controlled Fusion 28, 413.Google Scholar
Drake, J. F. et al. 1974 Phys. Fluids 17, 778.CrossRefGoogle Scholar
Drake, R. P. et al. 1988 Phys. Fluids 31, 3130.Google Scholar
Dubois, D. F., Forslund, D. W. & Williams, E. A. 1974 Phys. Rev. Lett. 33, 1013.CrossRefGoogle Scholar
Fedosejevs, R. et al. 1981 Opt. Comm. 40, 35.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. 1975 Phys. Fluids 18, 1002.CrossRefGoogle Scholar
Giles, R. & Offenberger, A. A. 1983 Phys. Rev. Lett. 50, 421.CrossRefGoogle Scholar
Giles, R. & Offenberger, A. A. 1988 Lasers and Particle Beams 7, 597.CrossRefGoogle Scholar
Handke, J., Rizvi, S. A. H., & Kronast, B. 1981 Appl. Phys. 25, 109.CrossRefGoogle Scholar
Karttunen, S. J. & Salomaa, R. E. E. 1982 Phys. Lett. 88A, 350.CrossRefGoogle Scholar
Karttunen, S. J., McMullin, J. N. & Offenberger, A. A. 1981 Phys. Fluids 24, 447.CrossRefGoogle Scholar
Kruer, W. L. 1988 The Physics of Laser Plasma Interactions (Addision-Wesley, Redwood City, CA, U.S.A.).Google Scholar
Mora, P. 1982 Phys. Fluids 25, 1051.CrossRefGoogle Scholar
Nicholson, D. R. & Kaufman, A. N. 1974 Phys. Rev. Lett. 33, 1207.Google Scholar
Nishikawa, K. & Liu, C. S. 1975 Advances in Plasma Physics 6, 41.Google Scholar
Offenberger, A. A. et al. 1982 Phys. Rev. Lett. 49, 371.CrossRefGoogle Scholar
Offenberger, A. A. et al. 1986 Lasers and Particle Beams 4, 329.CrossRefGoogle Scholar
Pesme, D., Laval, E. & Pellat, R. 1973 Phys. Rev. Lett. 31, 203.CrossRefGoogle Scholar
Rose, H. A., Dubois, D. F. & Bezzerides, B. 1987 Phys. Rev. Lett. 58, 2547.CrossRefGoogle Scholar
Rosenbluth, M. N., White, R. B. & Lui, C. S. 1973 Phys. Rev. Lett. 31, 1190.CrossRefGoogle Scholar
Rozmus, W., Al-Shiraida, Y. Y. & Offenberger, A. A. 1984 Phys. Fluids 27, 589.CrossRefGoogle Scholar
Rozmus, W., Offenberger, A. A. & Fedosejevs, R. 1983 Phys. Fluids 26, 1071.CrossRefGoogle Scholar
Rozmus, W., et al. 1987 Phys. Fluids 30, 2181.Google Scholar
Rozmus, W., Baldis, H. A. & Villeneuve, D. M. 1988 Plasma Phys. Controlled Fusion (to be published).Google Scholar
Rozmus, W. & Samson, J. C. 1988 Phys. Fluids 31, 2904.Google Scholar
Rozmus, W. & Goldstein, P. P. 1988 Phys. Rev. A in press.Google Scholar
Villeneuve, D. M., Baldis, H. A. & Bernard, J. E. 1987 Phys. Rev. Lett. 59, 1585.CrossRefGoogle Scholar
Walsh, C. J., Villeneuve, D. M. & Baldis, H. A. 1985 Phys. Rev. Lett. 15, 1445.Google Scholar
Zozulya, A. A., Silin, V. P. & Tikhonchuk, V. T. 1983 JETP Lett. 38, 52.Google Scholar