Article contents
Stimulated compton scattering of surface plasma wave excited over metallic surface by a laser
Published online by Cambridge University Press: 23 July 2015
Abstract
A high-frequency surface plasma wave (SPW) excited over metallic surface irradiated by a laser beam, can undergo stimulated Compton scattering if phase velocity of daughter plasma wave is equal to the Fermi velocity for metal. The pump SPW ${\rm (}{{\rm \omega} _0},{\vec k_{0{\rm z}}})$ parametrically excites a quasi-electrostatic plasma wave ${\rm (\omega}, {\vec k_{\rm z}})$ and a backscattered sideband SPW ${\rm (}{{\rm \omega} _1},{\vec k_{1{\rm z}}})$ at resonance ω0 = ω − ω1 and ${\vec k_{0{\rm z}}} = {\vec k_{\rm z}} - {\vec k_{1{\rm z}}}$. The growth rate of Compton process increases with the frequency of incident laser and turns out to be 5.425 × 1010 rad/s at laser frequency ω0 = 0.7595 × 1015 rad/s for incident laser amplitude A0L = 11 × 1011 V/m, laser spot size b = 1.38 × 10−5 m, and free electron density of metal n0 = 5.85 × 1028/m3. The excitation of highly damped quasi-electrostatic plasma wave in this parametric process provide a better nonlinear option for surface heating as compared with direct laser heating. The process can also be used for diagnostics purposes.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2015
References
REFERENCES
- 2
- Cited by