Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T02:07:24.272Z Has data issue: false hasContentIssue false

Stimulated compton scattering of surface plasma wave excited over metallic surface by a laser

Published online by Cambridge University Press:  23 July 2015

Deepika Goel
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
Prashant Chauhan
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
Anshu Varshney
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
D.B. Singh
Affiliation:
Laser Science and Technology Center, Delhi, India
Vivek Sajal*
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Uttar Pradesh, India
*
Address correspondence and reprint requests to: Vivek Sajal, Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India. E-mail: [email protected]

Abstract

A high-frequency surface plasma wave (SPW) excited over metallic surface irradiated by a laser beam, can undergo stimulated Compton scattering if phase velocity of daughter plasma wave is equal to the Fermi velocity for metal. The pump SPW ${\rm (}{{\rm \omega} _0},{\vec k_{0{\rm z}}})$ parametrically excites a quasi-electrostatic plasma wave ${\rm (\omega}, {\vec k_{\rm z}})$ and a backscattered sideband SPW ${\rm (}{{\rm \omega} _1},{\vec k_{1{\rm z}}})$ at resonance ω0 = ω − ω1 and ${\vec k_{0{\rm z}}} = {\vec k_{\rm z}} - {\vec k_{1{\rm z}}}$. The growth rate of Compton process increases with the frequency of incident laser and turns out to be 5.425 × 1010 rad/s at laser frequency ω0 = 0.7595 × 1015 rad/s for incident laser amplitude A0L = 11 × 1011 V/m, laser spot size b = 1.38 × 10−5 m, and free electron density of metal n0 = 5.85 × 1028/m3. The excitation of highly damped quasi-electrostatic plasma wave in this parametric process provide a better nonlinear option for surface heating as compared with direct laser heating. The process can also be used for diagnostics purposes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu.M. & Brodin, G. (1990). Instability of strongly inhomogeneous plasma. Phys. Rev. A 42, 2374.CrossRefGoogle ScholarPubMed
Berndt, R., Gimzewski, J.K. & Johansson, P. (1991). Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796.CrossRefGoogle ScholarPubMed
Brodin, G. & Lundberg, J. (1991). Parametric excitation of surface waves in a strongly inhomogeneous plasma. J. Plasma Phys. 46, 299307.CrossRefGoogle Scholar
Catchpole, K.R. & Polman, A. (2008). Plasmonic solar cells. Opt. Express 16, 2179321800.CrossRefGoogle ScholarPubMed
Drake, R.P., Baldis, R.L., Kruer, W.L., Williams, E.A., Estabrook, K., Johnston, T.W. & Young, P.E. (1990). Observation of stimulated Compton scattering from resonant electrons in a laser produced plasma. Phys. Rev. Lett. 64, 1990.CrossRefGoogle Scholar
Raether, H. (1988). Surface plasmons on smooth and rouge surfaces and on gratings. New York: Springer-Verlag.CrossRefGoogle Scholar
Hao, L., Liu, Z.J., Hu, X.Y. & Zheng, C.Y. (2013). Competition between the stimulated Raman and Brillouin scattering under the strong damping condition. Laser Part. Beams 31, 203209.CrossRefGoogle Scholar
Kretschmann, E. & Reather, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Z. Naturforschung 23a, 21352136.CrossRefGoogle Scholar
Kumar, N. & Tripathi, V.K. (2007). Parametric excitation of surface plasma waves in an overdense plasma irradiated by an ultrashort laser pluse. Phys. Plasma 14, 103108.CrossRefGoogle Scholar
Lee, H.J. & Cho, S.H. (1999). Parametric coupling of light wave and surface plasma waves. Phys. Rev. E 59, 35033511.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (1998). Diffraction-limited laser excitation of a surface plasma wave and its scattering on a rippled metallic surface. IEEE J. Quantum Electron. 34, 1503.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2000). Excitation of surface plasma waves over metallic surfaces by lasers and electron beams. IEEE Trans. Plasma Sci. 28, 2.Google Scholar
Macchi, A., Battaglini, M., Cornolti, F., Lisseikina, T.V., Pegoraro, F., Ruhl, H. & Vshivkov, V.A. (2002). Parametric generation of surface deformations in laser interaction with overdense plasmas. Laser Part. Beams 20, 337340.CrossRefGoogle Scholar
Prashar, J., Pandey, H.D. & Tripathi, V.K. (1998). Laser excitation of surface waves over a dense plasma. J. Plasma Phys. 59, 97102.CrossRefGoogle Scholar
Rani, M., Sharma, N.K. & Sajal, V. (2013). Localized surface plasmon resonance based fiber optic sensor with nanoparticles. Opt. Commun. 292, 92100.CrossRefGoogle Scholar
Shin, H. & Fan, S. (2006). All angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. Phys. Rev. Lett. 96, 073907.CrossRefGoogle ScholarPubMed
Shivarova, A., Stoychev, T. & Russeva, S. (1975). Surface wave propagation along a current carrying warm plasma. J. Phys. D: Appl. Phys. 8, 383.CrossRefGoogle Scholar
Shoucri, M. & Afeyan, B. (2010). Studies of the interaction of an intense laser beam normally incident on an overdense plasma. Laser Part. Beams 28, 129147.CrossRefGoogle Scholar
Singh, D.B. & Tripathi, V.K. (2007). Laser beat wave excitation of surface plasma wave and material ablation. Phys. Plasma 14, 103115.CrossRefGoogle Scholar
Singh, R.K. & Sharma, R.P. (2013). Stimulated Raman backscattering of filamented hollow Gaussian beams. Laser Part. Beams 31, 387394.CrossRefGoogle Scholar
Shin, Y.M., So, J.K., Jang, K.H., Won, J.H., Srivastava, A. & Park, G.S. (2007). Evanescent tunnelling of an effective surface plasmon excited by convection electrons. Phys. Rev. Lett. 99, 147402.CrossRefGoogle ScholarPubMed
Tinakiche, N., Annou, R. & Tripathi, V.K. (2012). Three-wave coupling in electron-positron-ion plasmas. Phys. Plasmas 19, 072114.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2011). Nonlinear electromagnetic Eigen modes of a self created magnetized plasma channel and its stimulated Raman scattering. Laser Part. Beams 29, 471477.CrossRefGoogle Scholar
Vyas, A., Singh, R.K. & Sharma, R.P. (2014). Study of coexisting stimulated Raman and Brillouin scattering at relativistic laser power. Laser Part. Beams 32, 657663.CrossRefGoogle Scholar
Zhaoquan, C., Guangqing, X., Minghai, L., Yelin, H., Xiaoliang, Z., Ping, L., Qiyan, Z. & Xiwei, H. (2012). Character diagnosis for surface-wave plasmas excited by surface plasmon polaritons. Plasma Sci. Technol. 14, 8.Google Scholar