Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T14:16:59.220Z Has data issue: false hasContentIssue false

Spatiotemporal evolution of a thin plasma foil with Kappa distribution

Published online by Cambridge University Press:  27 August 2014

H. Mehdian*
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
A. Kargarian
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
K. Hajisharifi
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
*
Address correspondence and reprint requests to: H. Mehdian, Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran, Iran. E-mail: [email protected]

Abstract

The one-dimensional behavior of a thin plasma foil heated by laser is studied, emphasizing on the fully kinetic effects associated with initial energetic electrons using a relativistic kinetic 1D3V Particle-In-Cell code. For this purpose, the generalized Lorentzian (Kappa) function inclusive the high energy tail is employed for initial electron distribution. The presence of the initially high-energy electrons leads to a different ion energy spectrum than the initially Maxwellian distribution. It is shown for the smaller Kappa parameter k where the high energy tail of the electron distribution function becomes more significant, the electron cooling rate increases. Moreover, the spatiotemporal evolution of electric field is strongly affected by the initial super-thermal electrons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bari, M.A., Sheng, Z.M., Wang, W.M., Li, Y.T., Salahuddin, M., Nasim, M.H., Shabbir, N.G., Gondal, M.A. & Zhang, J. (2010). Optimization for deuterium ion acceleration in foam targets by ultra-intense lasers. Laser Part. Beams 28, 333341.Google Scholar
Beutelspacher, M., Grieser, M., Schwalm, D. & Wolf, A. (2000). Longitudinal and transverse electron cooling experiments at the Heidelberg heavy ion storage ring TSR. Nucl. Instr. Meth. A 441, 110115.CrossRefGoogle Scholar
Birdsall, C.K. & Langdon, A.B. (1985). Plasma Physics via Computer Simulation. New York: McGraw- Hill.Google Scholar
Chen, Y.T. & Pukhov, M. (2009). A High quality GeV proton beams from a density-modulated foil target. Laser Part. Beams 27, 611617.Google Scholar
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670.Google Scholar
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneince, S., Newkirk, A., Pepin, H. & Renard-Legalloudec, N. (2004).Ultralow emittance, multi-mev proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.Google Scholar
Diaw, A. & Mora, P. (2012). Thin-foil expansion into a vacuum with a two-temperature electron distribution function. Phys. Rev. E 86, 026403.Google Scholar
Eliezer, S., Nissim, N., Raicher, E. & Martinez-Val, J.M. (2014). Relativistic shock waves induced by ultra-high laser pressure. Laser Part. Beams 32, 243251.Google Scholar
Eliezer, S., Nissim, N., Raicher, E., Martinez-Val, J.M., Mimaand, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.Google Scholar
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, 225231.CrossRefGoogle Scholar
Ergun, R.E., Carlson, C.W., Mcfadden, J.P., Mozer, L., Muschietti, F.S., Roth, I. & Strangeway, R.J. (1998). Debye-scale plasma structures associated with magnetic-field-aligned electric fields. Phys. Rev. Lett. 81, 826.Google Scholar
Formisano, V., Moreno, G., Palmiotto, F. & Hedgecock, P.C. (1973). Solar wind interaction with the Earth's magnetic field: 1. Magnetosheath. J. Geophys. Res. 78, 3714.CrossRefGoogle Scholar
Grismayer, T., Mora, P., Adam, J.C. & Heron, A. (2008). Electron kinetic effects in plasma expansion and ion acceleration. Phys. Rev. E. 77, 066407.Google Scholar
Hellberg, M.A., Mace, R.L., Baluka, T.K., Kourakis, I. & Saini, N.S. (2009). Comment on “Mathematical and physical aspects of Kappa velocity distribution.” Phys. Plasmas 16, 094701.CrossRefGoogle Scholar
Hockney, R.W. & Estwood, J.W. (1891). Computer Simulation Using Particles. New York: McGraw-Hill.Google Scholar
Hora, H. (1988). Dynamic superposition of laser fields for acceleration of ions and of electrons up to TeV/cm gain. Laser Part. Beams 6, 625647.Google Scholar
Hora, H. (2012). Fundamental difference between picosecond and nanosecond laser interaction with plasmas: Ultrahigh plasma block acceleration links with electron collective ion acceleration of ultra-thin foils. Laser Part. Beams 30, 325328.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 27, 3745.CrossRefGoogle Scholar
Huang, Y., Duan, X., Lan, X., Tan, Z., Wang, N., Tang, X. & He, Y. (2008). Time-dependent neutral-plasma isothermal expansions into a vacuum. Laser Part. Beams 26, 671675 .CrossRefGoogle Scholar
Jablonski, S., Badziak, J. & Raczka, P. (2014). Generation of high-energy ion bunches via laser-induced cavity pressure acceleration at ultra-high laser intensities. Laser Part. Beams 32, 129135.Google Scholar
Khoroshkov, V.S. & Minakova, E.I. (1998). Proton beams in radiotherapy. Euro. J. Phys. 19, 523.Google Scholar
Kiefer, T., Schlegel, T. & Kaluza, M.C. (2013). Plasma expansion into vacuum assuming a steplike electron energy distribution. Phys. Rev. E 87, 043110.Google Scholar
Liu, B., Zhang, H., Fu, L.B., Gu, Y.Q., Zhang, B.H., Liu, M.P., Xie, B.S., Liu, J. & He, X.T. (2010). Ion jet generation in the ultraintense laser interactions with rear-side concave. Laser Part. Beams 28, 351359.Google Scholar
Liu, M.P., Xie, B.S., Huang, Y.S., Liu, J. & Yu, M.Y. (2009). Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse. Laser Part. Beams 27, 327333.Google Scholar
Maksimovic, M., Pierrard, V. & Riley, P. (1997). Ulysses electron distributions fitted with Kappa Function. Geophys. Res. Lett. 24, 11511154.Google Scholar
Marsch, E., Pilipp, K.W.G., Thieme, M. & Rosenbauer, H. (1989). Cooling of Solar Wind Electrons Inside 0.3 AU. J. Geophys. Res. 9, 68936898.Google Scholar
Mckenna, P., Carroll, D.C., Lundh, O., Nu Rnberg, F., Markey, K.Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, M.Roth, R., Wahlstrom, C.G., Yuan, X.H. & Zepf, M. (2008). Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beam 26, 591596.CrossRefGoogle Scholar
Mora, P. (2005). Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401.Google Scholar
Mora, P. (2003). Plasma Expansion into a Vacuum. Phys. Rev. Lett. 90, 185002.Google Scholar
Mora, P. & Grismayer, T. (2009). Rarefaction acceleration and kinetic effects in thin-foil expansion into a vacuum. Phys. Rev. Lett. 102, 145001.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 512.CrossRefGoogle Scholar
Nia, P.A., Logana, B.G., Lunda, S.M., Alexanderal, N., Bienioseka, F.M., Cohena, R.H., Rotha, M. & Schaumanna, G. (2013). Feasibility study of the magnetic beam self-focusing phenomenon in a stack of conducting foils: Application to TNSA proton beams, Laser Part. Beams 31, 8188.Google Scholar
Pierrard, V., Maksimovic, M. & Lemaire, J. (1999). Electron velocity distribution functions from the solar wind to the corona. J. Geophys. Res. 104, 17,02117,032.CrossRefGoogle Scholar
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., Mcanny, T., Spencer, I., Machacek, A.C., Allott, R., Clarke, R. J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 19.CrossRefGoogle Scholar
Sagisaka, A., Nagatomo, H., Daido, H., Pirozhkov, A.S., Ogura, K., Orimo, S., Mori, M., Nishiuchi, M., Yogo, A. & Kado, M. (2009). Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration. Laser Part. Beams 75, 609617.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K. & Langdon, A.B. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.Google Scholar
Summers, D. & Thorne, R.M. (1991). The modified plasma dispersion function. Phys. Fluids B 3, 1835.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Yanga, X.H., Maa, Y.Y., Shaoa, F.Q., Xua, H., Yu, M.Y., Gua, Y.Q., Yua, T.P., Yina, Y., Tiana, C.L. & Kawatta, S. (2010). Collimated proton beam generation from ultraintense laser-irradiated hole target. Laser Part. Beams 28, 319325.Google Scholar
Yu, J., Jin, X., Zhou, W., Zhang, B., Zhao, Z., Cao, L., Li, B., Gu, Y., Zhan, R. & Najmudin, Z. (2013). Influence of the initial size of the proton layer in sheath field proton acceleration. Laser Part. Beams 31, 597605.Google Scholar