Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T05:57:38.223Z Has data issue: false hasContentIssue false

Space-resolved Spectral Diagnosis of Line-shaped Laser-produced Magnesium Plasmas

Published online by Cambridge University Press:  09 March 2009

Ling-Qing Zhang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800–211, Shanghai 201800, P.R. China
Shen-Sheng Han
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800–211, Shanghai 201800, P.R. China
Zhizhan Xu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800–211, Shanghai 201800, P.R. China
Xiang-Yang Song
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800–211, Shanghai 201800, P.R. China
Zheng-Quan Zhang
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800–211, Shanghai 201800, P.R. China

Abstract

Space-resolved spectra of line-shaped laser-produced magnesium plasmas in the normal direction of the target have been obtained using a pinhole crystal spectrograph. These spectra are treated by a spectrum analyzing code for obtaining the true spectra and fine structures of overlapped lines. The spatial distributions of electron temperature and density along the normal direction of the target surface have been obtained with different spectral diagnostic techniques. Especially, the electron density plateaus beyond the critical surface in line-shaped magnesium plasmas have been obtained with a fitting technique applied to the Stark-broadened Ly-α wings of hydrogenic ions. The difference of plasma parameters between those obtained by different diagnostic techniques is discussed. Other phenomena, such as plasma satellites, population inversion, etc., which are observed in magnesium plasmas, are also presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aglitskii, E.V. et al. 1974a Sov. J. Quant. Electron. 4(3), 322.CrossRefGoogle Scholar
Aglitskii, E.V. et al. 1974b Quantum Electron. 1, 579.Google Scholar
Bayanov, V.I. et al. 1976 Sov. J. Quant. Electron. 6(10), 1226.CrossRefGoogle Scholar
Boiko, V.A. et al. 1979 J. Phys. B, 12, 1889.CrossRefGoogle Scholar
Boiko, V.A. et al. 1983 J. Phys. B: Atom. Molec. Phys. 16, L77.CrossRefGoogle Scholar
Dalta, R.U. & Griem, H.R. 1979 Phys. Fluids 22(7), 1415.Google Scholar
De Groot, J.S. et al. 1991 Phys. Fluids B 3(5), 1241.CrossRefGoogle Scholar
De Groot, J.S. et al. 1992 Phys. Fluids B 4(3), 701.CrossRefGoogle Scholar
De Michelis, C. & Mattioli, M. 1984 Rep. Prog. Phys. 47, 1233.CrossRefGoogle Scholar
De Michelis, C. & Mattioli, M. 1981 Nucl. Fusion 21(6), 677.CrossRefGoogle Scholar
Goldstein, W.H., et al. 1987 Phys. Rev. Lett. 58(22), 2300.CrossRefGoogle Scholar
Griem, H.R. 1974 Spectral Line Broadening by Plasma. (Academic, New York).Google Scholar
Han, S.S. et al. 1992 In Proc. 3rd Int. Colloquium on X-ray Lasers, p. 383.Google Scholar
Han, S.S. et al. 1996 Phys. Let. A 214, 180.CrossRefGoogle Scholar
Ilyukhin, A.A. et al. 1981 Sov. J. Quant. Electron. 11(1), 34.CrossRefGoogle Scholar
Jamelot, G. et al. 1992 In Proc. 3rd Int. Colloquium on X-ray Lasers, p. 89.Google Scholar
Karzas, W.J. & Latter, R. 1961 Astrophys. J. 6 (Suppl.), 167.CrossRefGoogle Scholar
Kauppinen, J.K. et al. 1981 Applied Spectroscopy 35(3), 271.CrossRefGoogle Scholar
Key, M.H. et al. 1980 Phys. Rev. Lett. 44, 1669.CrossRefGoogle Scholar
Lee, R.W. 1979 J. Phys. B: Atom. Molec. Phys. 12(7), 1165.CrossRefGoogle Scholar
Marquardt, D.W. 1963 J. Soc. Ind. Appl. Math. 11(2), 431.CrossRefGoogle Scholar
Mora, P. 1982 Phys. Fluids 25(6), 1051.CrossRefGoogle Scholar
Nantal, M. et al. 1992 In Proc. 3rd Int. Colloquium on X-ray Lasers, Fill, E.E., ed. (Institute of Physics and Physical Society, London), p. 353.Google Scholar
Riley, D. & Willi, O. 1995 Phys. Rev. Lett. 75(22), 4039.CrossRefGoogle Scholar
Smith, C.C. & Peacock, N.J. 1978 J. Phys. B: Atom. Molec. Phys. 11(15), 2749.CrossRefGoogle Scholar
Statham, P.J. 1976 X-Ray Spectrometry 5, 16.CrossRefGoogle Scholar
Van Espen, P. et al. 1977 Nucl. Instruments and Methods 142, 243.CrossRefGoogle Scholar
Zhang, L.Q. et al. 1994 In X-Ray Lasers 1994, Fourth Int. Colloquium, Eder, D.C. and Matthews, D.L., eds. p. 229.Google Scholar
Zhang, L.Q. et al. 1995 Phys. Rev. E. 51(6), 6059.CrossRefGoogle Scholar