Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:25:08.352Z Has data issue: false hasContentIssue false

Some studies on picosecond laser produced plasma expanding across a uniform external magnetic field

Published online by Cambridge University Press:  09 March 2009

V.N. Rai
Affiliation:
Laser Plasma Laboratory, Centre for Advanced Technology, P.O. CAT, Indore 452 013, India
M Shukla
Affiliation:
Laser Plasma Laboratory, Centre for Advanced Technology, P.O. CAT, Indore 452 013, India
H.C. Pant
Affiliation:
Laser Plasma Laboratory, Centre for Advanced Technology, P.O. CAT, Indore 452 013, India

Abstract

Some characteristics of the picosecond laser produced plasma expanding across an externally applied magnetic field (0.6T) have been reported. Two to three times enhancement in X-ray emission from copper plasma has been observed for the laser intensity range ∼5 X 1011 to 5 X 1012 W/cm2. The X-ray yield has been found to increase with an increase in the magnetic field intensity. Enhancement in X-ray emission is correlated with confinement of expanding plasma either in external magnetic field or in high ambient gas pressure. Generation of some highfrequency instability and fast ions was also observed in the plasma along with bouncing of plasma near the β = 1 surface where kinetic pressure of plasma equals magnetic pressure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balmer, J.E. & Donaldson, T.P. 1977 Phys. Rev. Lett. 39, 1084.CrossRefGoogle Scholar
Balmer, J.E. et al. 1990 Laser Part. Beams 8, 327.CrossRefGoogle Scholar
Begimaculov, U.S. et al. 1992 Laser Part. Beams 10, 723.Google Scholar
Bhadra, D.K. 1968 Phys. Fluids 11, 234.Google Scholar
Bleach, R.D. & Nagel, D.J. 1978 J. Appl. Phys. 49, 3832.Google Scholar
Cairns, R.E. & Sanderson, J.J. 1980 SUSSP Publication Edinburgh.Google Scholar
Chang, C.T. & Hashmi, M. 1977 Phys. Fluids 20, 533.Google Scholar
Dawson, J.A.M. 1964 Phys. Fluids 7, 981.Google Scholar
Diwedi, R.K. & Thareja, R.K. 1995 Phys. Rev. B 51, 7160.Google Scholar
Eidman, K. et al. 1984 Phys. Rev. A 30, 2568.CrossRefGoogle Scholar
Eidman, K. & Schwanda, W. 1991 Laser Part. Beams 9, 551.CrossRefGoogle Scholar
Enright, G.D. & Burnett, N.H. 1986 Phys. Fluids 29, 3456.Google Scholar
Goldston, R.J. & Rutherford, P.H. 1995 Introduction to Plasma Physics (Institute of Physics, Publishing, Bristol and Philadelphia).CrossRefGoogle Scholar
Griem, H.R. 1964 Plasma Spectroscopy (McGraw-Hill, New York).Google Scholar
Huddlestone, R.H. & Leonard, S.L. 1965 Plasma Diagnostics Techniques (Academic Press, New York).Google Scholar
Liewer, P.C. 1985 Nucl. Fusion 25, 543.Google Scholar
Pisarczyk, T. et al. 1992 Laser Part. Beams 10, 767.CrossRefGoogle Scholar
Radziemski, L.J. & Cramers, D.A. 1989 Laser Induced Plasma and Applications (Marcel Dekker, New York).Google Scholar
Rai, V.N. et al. 1995a Proc. of National Laser Symposium, IRDE, Dehradun, 10–14 Feb., p. 269.Google Scholar
Rai, V.N. et al. 1995b Sadhana, Academy Proc. in Eng. Sci. 20, 937.Google Scholar
Rai, V.N. et al. 1996 Recent Advances in Plasma Science and Technology, Singh, R.P. et al. eds. (Allied Publishers, New Delhi), p. 191.Google Scholar
Richardson, M.C. et al. 1986 Phys. Rev. A 33, 1246.CrossRefGoogle Scholar
Ripin, B.H. et al. 1987 Phys. Rev. Lett. 59, 2299.Google Scholar
Suckewer, S. & Fishman, H. 1980 J. Appl. Phys. 51, 1922.Google Scholar
Suckewer, S. et al. 1985 Phys. Rev. Lett. 55, 1753.Google Scholar
Sydora, R.D. et al. 1983 Phys. Fluids 26, 2986.CrossRefGoogle Scholar
Tuckfield, R.G. & Schwirzke, F. 1969 Plasma Phys. 11, 11.CrossRefGoogle Scholar
Yaakobi, B. et al. 1981 Opt. Commun. 38, 196.CrossRefGoogle Scholar