Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T19:48:34.106Z Has data issue: false hasContentIssue false

Some aspects of the unified model of non-ideal high-parameter plasmas: electron EOS and conduction coefficients

Published online by Cambridge University Press:  09 March 2009

L. Drska
Affiliation:
Faculty of Nuclear Science and Physical Engineering, Technical University of Prague, Brehova 7, 115 19 Prague 1, Czechoslovakia
J. Vondrasek
Affiliation:
Faculty of Nuclear Science and Physical Engineering, Technical University of Prague, Brehova 7, 115 19 Prague 1, Czechoslovakia

Abstract

We present two partial models applied in the atomic physics subpackage used in numerical simulations of pulsed-source-driven, non-ideal high-parameter plasmas. These are an electron EOS model and a model for electron conductivity coefficient calculations. The EOS model uses Dharma-Wardana exchange and a correlation correction that depends on both electron density and temperature. The electron thermal and electrical conductivity calculations are based on the Balescu-Lenard equation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzeni, S., Caruso, A. & Pais, V. A. 1986 Laser and Particle Beams 4, 393.CrossRefGoogle Scholar
Cicchitelli, L. et al. 1984 Laser and Particle Beams 2, 467.CrossRefGoogle Scholar
Dharma-Wardana, M. W. C. & Taylor, R. 1981 J. Phys. C: Solid State Phys. 14, 629.CrossRefGoogle Scholar
Drska, L. & Vondrasek, J. 1986 Proc. 6th Int. Conf. on High-Power Particle Beams,Kobe1986 (edited by C. Yamanaka), p. 358.Google Scholar
Eliezer, S., Ghatak, A. K. & Hora, H. 1986 Equations of State, Cambridge Univ. Press.Google Scholar
Forsythe, G. E., Malcolm, M. A. & Moler, C. B. 1977 Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs.Google Scholar
Geiger, W., Hornberg, H. & Schramm, K. H. 1968 Springer Tracts in Modern Physisies, Springer-Verlag, Berlin, p. 1.Google Scholar
Kalitkin, N. N. 1975 Tables of Thermodynamic Function of Matter at High Energy Densities (in Russian), Inst. Appl. Math., Moscow.Google Scholar
Klimontovich, Yu. L. 1982 Statistical Physics (in Russian), Nauka, Moscow.Google Scholar
Lee, Y. T. & More, R. M. 1984 Phys. Fluids 27, 1273.CrossRefGoogle Scholar
More, R. M. 1986 Laser Plasma Interactions 3 (edited by Hooper, H. B.), Sussp Publications, Edinburgh, p. 157.Google Scholar
Nicholas, D. J. 1983 Laser Plasma Interactions 2 (edited by Cairns, R. A.), SUSSP Publications, Edinburgh, p. 129.Google Scholar
Rozsnyai, B. F. 1972 Phys. Rev. 145, 1137.CrossRefGoogle Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases, 2nd ed., Interscience, New York.Google Scholar